Faculty of Management Zaječar Megatrend University Belgrade

FOURTH INTERNATIONAL SYMPOSIUM ON NATURAL RESOURCES MANAGEMENT

PROCEEDINGS

Edited by Dragan Mihajlović Bojan Đorđević

Zaječar, Serbia 31 May – 1 June 2014

4rd International Symposium on Natural Resources Management

Supported by Ministry of Education and Science of the Republic of Serbia

Publisher:	Faculty of Management, Zajecar, Megatrend University, Belgrade						
For the publisher:	Dragan Ranđelović, secretary general						
Editor in chief:	Full Professor Dragan Mihajlović, Associate Professor Bojan Đorđević						
Technical editors:	Associate Professor Dragiša Stanujkić Assistant Professor Saša Ivanov Gabrijela Popović, MSc						
Printed:	Printing office "Tercija" Bor						
Copies:	100						

The publisher and the authors retain all rights. Copying of some parts or whole is not allowed. Authors are responsible for the communicated information.

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

330.15(082) 502.131.1(082) 330.34:502.131.1(082) INTERNATIONAL Symposium on Natural Resources Management (4; 2014; Zaječar) Proceedings / Fourth International Symposium on Natural Resources Management, Zaječar, 31 May-1 June 2014 ; [organizer] Faculty of Management Zajecar, Megatrend University Belgrade ; edited by Dragan Mihajlović, Bojan Đorđević. - Zaječar : Faculty of Management, 2014 (Bor : Tercija). - 350 str. : graf. prikazi, tabele ; 30 cm Tiraž 100. - Bibliografija uz svaki rad. ISBN 978-86-84763-04-6 1. Megatrend univerzitet (Beograd) а) Природна богатства - Коришћење -Зборници b) Животна средина - Одрживи развој - Зборници с) Привредни развој -Одрживи развој - Зборници COBISS.SR-ID 207592460

ISBN: 978-86-84763-04-6

Zaječar, Serbia

31 May – 1 June 2014

SCIENTIFIC COMMITTEE

Mića Jovanović, PhD, Chairman, Rector of Megatrend University Belgrade Vladan Kutlešić, PhD, Rector Deputy of Megatrend University Belgrade Dragan Mihajlović, PhD, Dean, Faculty of Management Zajecar, Megatrend University Belgrade Jean Jacques Chanaron, PhD, Chairman of Megatrend University Belgrade, Grenoble Ecole de Management, France John A. Nesbitt, Ed. D., CTRS Professor Emeritus, University of Iowa Sung Jo Park, PhD, Free University, Berlin, Germany Dominique Jolly, PhD at CERAM, Sophia Antipolis, Nice Radomir A. Mihajlović, PhD, New York Institute of Technology, USA Antonello Garzoni, PhD, Preside della Facoltà di Economia, Università LUM Jean Monnet Antonio Salvi, PhD, Dean, Univesita LUM, "Jean Monnet", Bari, Italy Angeloantonio Russo, PhD, Univesita LUM, "Jean Monnet", Bari, Italy Nicolaie Georgesku, PhD, Rector of Alma Mater University of Sibiu Maria Turtoi, PhD, Alma Mater University of Sibiu Žarko Obradović, PhD, Vice Rector of Megatrend University Belgrade Vencislav Ivanov, PhD, University of Mining and Geology "St. Ivan Rilski" Sofia Ljuben Ivanov Totev, PhD, Rector at the University of Mining and Geology "St. Ivan Rilski" Sofia Nadežda Ćalić, PhD, Dean of Mining Faculty Prijedor, University of Banja Luka Żarko Lazarević, PhD, Institute for Contemporary History Ljubljana, Slovenia Jane Paunković, PhD, Faculty of Management Zajecar, Megatrend University Belgrade Jelena Bošković, PhD, Dean of Faculty of Biofarming, Megatrend University Belgrade Grozdanka Bogdanović, PhD, Technical Faculty Bor, University of Belgrade Bojan Đorđević, PhD, Vice Dean, Faculty of Management Zajecar, Megatrend University Belgrade Srđan Žikić, PhD, Vice Dean, Faculty of Management Zajecar, Megatrend University

Belgrade

ORGANISING COMMITTEE

Dragan Mihajlović, hairman Bojan Đorđević, Deputy Chairman Jane Paunković Srđan Žikić Dragan Ranđelović Dragiša Stanujkić Saša Ivanov Nebojša Simeonović Mira Đorđević Milica Paunović Sanja Stojanović Sanja Jevtić Ivana Nikolić Gabrijela Popović Anđelija Plavšić **Biljana Ilić** Aleksandra Cvetković Dragica Stojanović Jovan Vetović

"SUSTAINABLE DEVELOPMENT AND GREEN ECONOMY IN TRANSITION COUNTRIES – CHALLENGES AND PERSPECTIVES"

TABLE OF CONTENT

Biserka Dimishkovska, Nikola Dimishkovski, Jovan Dimishkovski EXISTING PRACTICES OF SOLID WASTE MANAGEMENT IN R MACEDONIA	11 - 19
Bojan Đorđević, Dragica Stojanović	21 - 31
Biljana Ilić, Dragan Mihajlović, Gabrijela Popović	33 - 42
STRATEGIES OF GAMZIGRAD SPA DEVELOPMENT TOWARDS GREEN ECONOMY	42 50
BIJANA IIIC, LEPOSAVA JOVANOVIC CONTRIBUTION TO GREEN AND SUSTAINARLE ECONOMY BY REDUCING GAS EMISSIONS	43 - 50
Donato Calace	51 - 62
CULTURAL INSIGHTS OF SUSTAINABILITY REPORTING IN SMES: AN EXPLORATORY STUDY	01 02
Diana Damevska, Anna Ivanovska	63 - 68
THROUGH GREEN ECONOMY TO RENEWABLE ENERGY RESOURCES	
Darjan Karabašević	69 - 74
SUSTAINABILITY MODEL OF CORPORATE GOVERNANCE AND CORPORATE SOCIAL RESPON	SIBILITY
IN SERBIA Davian Karabažarić, Ana Stanuikić	75 70
DALIAN KARADASEVIC, ANA STANUJKIC PEREORMANCE MANAGEMENT IN EUNCTION OF DEVELOPMENT OF COMPANIES	15 - 19
Dalibor Miletić Petar Veselinović Mlađan Dimitrijević	81 - 90
THE KEY CHALLENGES OF THE TRANSITION COUNTRIES: GLOBALIZATION AND SUST	AINABLE
DEVELOPMENT	
Dalibor Miletić, Krunislav Sovtić, Dragoslav Stefanović	91 - 101
SUSTAINABLE DEVELOPMENT IN FUNCTION OF THE REDUCTION OF POVERTY AND	SOCIAL
EXCLUSION	
Dragica Stojanović, Biljana Ilić, Bojan Đorđević	103 - 111
GREEN ECONOMY- RISKS AND CHALLENGES OF SUSTAINABLE ECONOMIC GROWTH	112 110
Gianpiero Menza	113 - 118
ITTE IMPACT OF COLIURAL DIMENSION ON THE INTERNATIONALIZATION PROCESS	OF INE
Ivano De Turi	119 - 126
THE ROLE OF ACADEMIC SPIN-OFFS IN ENTREPRENEURIAL INNOVATION AND RE	GIONAL
DEVELOPMENT: THE APULIA CASE" AND A FOCUS ON THE EXTERNAL ENVIRONMENT, ESP.	ECIALLY
THE ROLE OF THE ORGANIZATIONAL CULTURE	
Ivan Ivanović, Slavica Ostojić, Ana-Marija Đurić	127 - 132
CONCEPT OF BLUE ECONOMY - CHALLENGES FOR THE FUTURE	
Leposava Jovanović, Marina Malenović, Ivana Avramović	133 - 136
CORFORATE INCOME TAA INCENTIVES Lenosaya Joyanović Biliana Ilić Mladen Joyanović	137 - 141
THE ROLE OF CORPORATE SOCIAL RESPONSIBILITY AND GREEN MARKETING IN CONTEM	IOT - IHI IPORARY
Ljiljana Trumbulović, Zagorka Aćimović, Ljubiša Andrić, Nada Jovičić	143 - 146
COPPER AND ITS IMPACT ON HEALTH AND SAFETY OF WORKERS IN METAL INDUSTRY	
Milan Đuričić, Ahmed Mumdžić, Ljubiša Andrić, Marko Pavlović	147 - 150
BENEFITIAL MODEL FOR TECHNOLOGICAL DEVELOPMENT OF BUSINESS SYSTEM IN	METAL
PROCESSING INDUSTRY OF SERBIA	1 - 1
INITIAN GRUJOVIC DECISION MAKING IN ACDICULTUDE USING LINEAD DDOCDAMMING SIMDLEY METHOD	151 - 155
DECISION MARING IN AGRICOLI URE USING LINEAR FROGRAMMING SIMPLEA METHOD Mirka Iykayié Jaya Milianayié	157 - 160
THE RE-CULTIVATION OF LAND DAMAGED BY UNDERGROUND COAL MINING IN SERBIA	137 - 100
Mladen Jovanović, Ivana Avramović, Leposava Jovanović	161 - 166
A STEP AHEAD OF THE COMPETITION BY CREATING A UNIQUE SALES OFFER	
Mlađan Maksimović	167 - 174
SUSTAINABILITY OF ENERGY EFFICIENCY OF RAILWAY STATION BUILDING BOR USING LEL)
Marija Nikolić, Irena Ristić, Mlađan Maksimović	175 - 180
SOLAR ENERGY- SERBIAN MARKET FOR SOLAR PANELS	101 107
IVINCA FAUNOVIC, ANDENIA FIAVSIC, AND STANUJKIC	181 - 186 MV
THE GLASS CEILING - A FRECONDITION FOR TRANSITION ON THE WAT TO GREEN ECONOR	VI I

Miroslav Sokić, Zvonko Gulišija, Branislav Marković, Nada Štrbac, Vaso Manojlović	187 - 194
STEEL SCRAP AS AN IMPORTANT RESOURCE IN THE PRODUCTION OF IRON AND STEEL	
LIGHTING	
Maria Teresa Riggio, Francesco Saverio Massari, Donato Calace	195 - 211
ITALIAN NETWORK CONTRACTS: CAN CULTURAL DIMENSIONS INFLUENCE A	NETWORK
STRUCTURE?	
Slobodan Ignjatović	213 - 224
ENERGY SYSTEM OF SERBIA IN POST-CRISIS PERIOD, BASED ON RENEWABLE ENERGY SC	OURCES, AS
A SIGNIFICANT FACTOR OF SUSTAINABLE ECONOMIC GROWTH AND DEVELOPMENT	
Saša Ivanov, Dragiša Stanujkić, Gabrijela Popović	225 - 235
SUSTAINABILITY OF E-COMMERCE IMPLEMENTATION IN "PLANINKA" COMPANY	
Svetislav Milenković, Svetlana Utvić	237 - 244
CHALLENGING MANAGEMENT MODELS OF SERBIA NATURAL RESOURCES	
Slavica Miletic, Dragan Mihailović, Bojan Stoičetović, Valentina Velinov	245 - 252
SUSTAINABLE DEVELOPMENT, RENEWABLE ENERGY AND ENVIRONMENT	
Srdian Zikic. Jane Paunkovic	253 - 257
MANAGEMENT OF RENEWABLE ENERGY SOURCES AS A RESOURCE OF SU	STAINABLE
DEVELOPMENT OF SERBIA	
Vasyl H. Gerasymchuk	259 - 269
STRATEGIC AIMS OF SUSTAINABLE DEVELOPMENT UKRAINE EUROPE WORLD	
Венцистав Иванов	271 - 278
СЪСТОЯНИЕ НА ПРИРОЛНАТА СРЕЛА В РАЙОНИТЕ НА ЛИКВИЛИРАНИ ПОЛЗЕМНИ РУ	лнини
Violeta Jovanović Jane Paunković	279 - 287
LIFELONG LEARNING FOR SUSTAINABLE DEVELOPMENT IN SERBIA	
Dragan Mihailović	289 - 295
THE "SOUTH STREAM" AS AN INVESTMENT IN THE ENERGY SECTOR OF SERBIA	
Darko M. Milosević, Marko Kimi Milić, Nenad M. Stojanović	297 - 306
EVALUATING THE REST SOLAR CELL PRODUCT USING TOPSIS IN AHP FUZZY ENVIRONME	ENT
Milinko Ranilović. Miriana Ranilović. Danijela Ranilović	307 - 315
GREEN ECONOMY IN THE EUROPEAN UNION AND THE RELATIONSHIP WITH BO	SNIA AND
HERZEGOVINA	
Milinko Ranilović, Miriana Ranilović, Miro Ranilović	317 - 324
POLITICAL WILLINGNESS OF BOSNIA AND HERZEGOVINA FOR SUSTAINABLE DEVI	ELOPMENT
(achievements and difficulties)	
Nenad M. Stojanović, Marko Kimi Milić, Darko M. Milošević	325 - 332
IMPLEMENTATION OF MODERN TECHNOLOGIES IN METALLURGY IN THE FUN	CTION OF
PROTECTION OF THE ENVIRONMENT AND NATURAL RESOURCES	
Slavica Miletić, Jane Paunković, Daniela Urošević, Valentina Velinov	333 - 338
POLLUTION OF THE RIVER BORSKA WITHIN THE CONTEX OF SUSTAINABLE DEVELOPME	NT
Tamara Galonia Coghill. Milica Stoinić	339 - 344
MONITORING AND CORRELATION BETWEEN ELF ELECTROMAGNETIC POLLUTION AND) EXHAUST
FUMES AIR POLLUTION IN NOVI SAD	
Tamara Galonia Coghill. Milica Stoinić	345 - 350
DIVERSITY AND ABUNDANCE OF LICHENS IN URBAN AREAS IN CORRELATION	WITH AIR
POLLUTION THROUGH ELECTROMAGNETIC FIELDS AND EXHAUST FUMES EMISSIONS	

FOREWORD

Environmental issues have become increasingly incorporated in scientific agendas of the most diverse fields of knowledge. Its growing relevance originates from the widespread understanding that environmental sustainability is indispensable to the long term development of societies. The challenge of moving towards a more egalitarian and sustainable society is on the agenda, more than ever. This is the context in which the concept of green economy has emerged. Green economy will be one of the key topics of 4th International Symposium on Natural Resources Management in Zaječar, Republic of Serbia.

The challenge is not simple and discussions are only beginning. Despite having a formal conceptualization, precise delineations are still to be determined. After all, what is a green economy? Which economies are closer to reaching it? How to measure the degree of "greening" of an economy? What does it mean, concretely, to achieve transition to a green economy? What is the role of the state in this transition? How to finance the transition? Which sectors will be most affected? Which will be most benefited? How would the transition affect the daily lives of citizens? And in the case of Serbia, what has the country done and what is left to do to advance towards a green economy? How is the country doing, compared to the others? What are the main obstacles and challenges? How to address them? What would a transition mean for society, productive sectors, for government, for consumers? How can developed and developing countries cooperate in this transition? How can international promotion and cooperation organizations align themselves with these objectives? How can United Nations priority international initiatives, such as the Climate Change and the Biodiversity Conventions, encourage and implement common agendas aimed at achieving these objectives?

Green economy raises many questions that do not have simple and straight answers. We know, however, that the transition requires substantial efforts and engagement from all segments of society, especially government and the private sector. It demands that governments level the playing field for greener products by removing perverse incentives, revising policies and incentives, strengthening market infrastructure, introducing new market mechanisms, redirecting public investment and "greening" public procurement. The private sector, on the other hand, will need to respond to these policy reforms through increased financing and investments, as well as by creating innovation skills and capabilities to make the best of green economy opportunities.

The contributions to the international symposium have come from the professors and associates of Megatrend university as well as from authors from other universities in the country and abroad. Professors and doctoral students from universities in Italy, Ukraine, Bulgaria, Bosnia and Herzegovina and Macedonia, have also made contributions to this conference. The Proceedings are intended for the scientific and professional community as well as students of doctoral studies. The contents allow readers to learn about contemporary approaches, perspectives and challenges in the sustainable development and green economy of transition countries.

Enjoy the reading!

Zaječar, May 2014

Editors

4th International Symposium on Natural Resources Management
 "Sustainable Development and Green Economy in Transition Countries" 31st May -1st June, 2014, Faculty of Management Zajecar, Republic of Serbia
 www.fmz.edu.rs

STRATEGIES OF GAMZIGRAD SPA DEVELOPMENT TOWARDS GREEN ECONOMY

Biljana Ilić¹, Dragan Mihajlović² Gabrijela Popović³

¹Faculty of Management, Zajecar, biljana.ilic@fmz.edu.rs ²Faculty of Management, Zajecar, gabrijela.popovic@fmz.edu.rs ³ Faculty of Management Zajecar, dragan.mihajlovic@fmz.edu.rs

ABSTRACT

Tourism is integral part of modern business, and also part of green economy. Spa tourism must bee seen as a major part of the tourism in the countries that are rich in spas. In this case it must be considered as tool of achieving important economic goals. The paper proposes an evaluation model based on TOPSIS, and ELECTRE mathematical methods to help the decision makers in selection of the optimal strategy for Gamzigrad spa development. AHP method is used as ancillary method to determine the weights of criteria. A real case study is used for determination of the development strategies, towards green economy.

KEYWORDS

Modern society, economic goals, green economy, TOPSIS, ELECTRE.

1. INTRODUCTION

In the last few years, there have been more and more proofs pointing to the fact that doing tourism means being highly concerned with sustainability of natural resources. Green economy is the growth in income and employment growth, through investments that reduce emissions of harmful elements in the eco-system, increasing the efficiency of nature and maintaining biodiversity. Harmful elements, such as waste gases, hazardous substances, formed as by-products of modern human activity. In order to reduce the harmful effects to the environment, mankind would have to think of finding the ways to help a sustainable economy, and to compliance it with environmental objectives. The main goal of the economy is realization of economic gain, regardless of other factors, while the main goal of environmental protection, is protection of natural resources and the environment in which human activity is performed. Based on that facts, it can be concluded that the green economy as a new branch of economics, encompasses the achievement of economic goals, but with maximum consideration of environmental objectives, too. The paper is based on finding the adequate development of spa tourism strategies, in case studies of Gamzirad spa, using the appropriate mathematical methods to help decision makers in the selection of appropriate solutions. In that case development strategies of Gamzigrad spa contained both economic component, as well as environmental factors, taking into account the concept and objectives of a green economy.

2. POTENTIAL OF GAMZGRAD SPA

Gamzigrad spa has a great potential for the tourism development, and because of that it is necessary to determine appropriate strategies for achieving the desirable improvement. But choosing the appropriate

strategy is not easy task and very important question is: *Which strategy is the appropriate choice for present conditions?* The answer to this question could be obtained by using MCDM (Multi-Criteria Decision-Making) methods. Many authors have discussed MCDM methods in the papers and example of that are reviews include: [1-7]. This paper presents the possibility of finding adequate strategy for sustainable development of Gamzigrad spa by using TOPSIS and ELECTRE. Criteria weights are determined by using AHP method. The paper is organized as follows: in section 2 the methods are explained; section 3 contains numerical example; and conclusions are discussed in section 4.

3. THE AHP METHOD

AHP was proposed by Saaty [8, 9] to model subjective decision-making processes based on multiple criteria in a hierarchical system. This method is very convenient for determining the relative criteria weights Three of the most used methods for determining the weights in AHP are: average of normalized columns (ANC), normalization of row average (NRA), and normalization of the geometric mean of the rows (NGM) [10]. The AHP method includes following steps: **Step 1.** Construct a pairwise comparison matrix using the fundamental scale of the AHP (Table 1).

Table 1. Fundamental scale of AHP					
The evaluation scale	Definition				
13	Equally important Slightly more importance				
5	Strongly more importance				
7	Demonstrably more importance				
9	Absolutely more importance				
2, 4, 6, 8	The medium value of the adjacent scale				

	Table 2.	Pairwase	compariso	on matrix	
	C_1	C_2	C_3	•••	C_{j}
C_1	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃		a_{1j}
C_2	<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃	•••	a_{2j}
•			•	•	•
C_j	a_{j1}	a_{j2}	a_{j3}		a _{jj}

In the pairwase comparison matrix where a_{ij} denotes the comparative importance of criterion C_i with respect to criterion C_j . In the matrix $a_{ij} = 1$, when i = j and $a_{ji} = a_{ij}$. Step 2. Calculate relative normalized weight w_j of each criterion by using the following formulae:

$$GM_i = \left(\prod_{i=1}^n a_{ij}\right)^{1/n},\tag{1}$$

$$w_j = GM_i / \sum_{i=1}^{n} GM_i,$$
⁽²⁾

where GM is geometric mean.

Step 3. Determine the maximum eigenvalue
$$\lambda_{\max}$$
 and calculate the consistency index CI :
 $CI = (\lambda_{\max} - n)/(n-1).$
(3)

Step 4. Obtain the random index *RI* for the number of criteria used in the decision making (Table 3).

Table 3. Random index details									
Number of criteria	1	2	3	4	5	6	7	8	9
RI	0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45

Step 5. Calculate the consistency ratio CR by using following formula:

CR = CR/RI.

Judgment is appropriate when the value of CR is 0.1.

4. THE TOPSIS METHOD

The TOPSIS was first introduced by Hwang and Yoon 1981 [11]. According to this method the most suitable alternative would have the shortest distance from the ideal solution and largest distance from the anti-ideal solution [12]. There are a lot of examples of using TOPSIS for improving the decision making process in many different fields and one example of that is paper of Dağdeviren et al. [13]. The TOPSIS method consists of following steps: **Step 1.** Establish decision matrix. Criteria shown as qualitative values need to be changed into quantitative values. A numerical scale, which is using for that purpose, is shown in Table 4:

Table 4. Transformation of linguistic scales into quantitative values

Time-intia anala	Quantitative value				
Linguistic scale	Benefit - max	Cost - min			
Very high	9	1			
High	7	3			
Average	5	5			
Low	3	7			
Very low	1	9			

Step 2. Calculate the normalized decision matrix. The normalized value r_{ij} is calculated as:

$$r_{ij} = x_{ij} / \sqrt{\sum_{i=1}^{m} x_{ij}^2} , \qquad (5)$$

where x_{ij} is the rating of alternative A_i with respect to the criteria C_j , w_j is the weight of the criteria C_j , i = 1,...,m, m is number of alternatives, and j = 1,...,n, n is number of criteria [14]. Step 3. Create the weighted normalized decision matrix. The weighted normalized value v_{ij} is calculated as:

$$v_{ij} = w_j r_{ij}$$
.

Step 4. Determine ideal solution A^+ and anti-ideal solution A^- using formulae:

$$A^{+} = \{v_{1}^{+}, \dots, v_{n}^{+}\} = \{\max_{i} v_{ij} \mid i \in I'\} \{\min_{i} v_{ij} \mid i \in I''\} \}$$
(7)

$$A^{-} = \left\{ v_{1}^{-}, ..., v_{n}^{-} \right\} = \left\{ \min_{i} v_{ij} \middle| i \in I' \right\} \left(\max_{i} v_{ij} \middle| i \in I'' \right) \right\}$$
(8)

where I' is associated with set of benefit criteria, and I'' is associated with set of cost criteria. Step 5. Calculate the separation of each alternative from ideal solution D_i^+ , and anti-ideal solution D_i^- using the n-dimensional Euclidean distance using formulae:

$$D_{i}^{+} = \sqrt{\sum_{j=1}^{n} \left(v_{ij} - v_{j}^{+} \right)},$$
(9)

35

(6)

(4)

$$D_i^- = \sqrt{\sum_{j=1}^n \left(v_{ij} - v_j^- \right)}.$$
 (10)

Step 6. Calculate the relative closeness to the ideal solution (where $0 \le C^+ \le 1$) as follows.

$$C_i^+ = D_i^- / \left(D_i^+ + D_i^- \right), \tag{11}$$

5. THE ELECTRE METHOD

The ELECTRE method was developed by Roy 1968 [15] as response to the existing decision making methods. This method could be viewed as a philosophy of a decision aid. The main steps of the ELECTRE method include: Step 1, 2 and 3 are equal to the TOPSIS methodology. Step 4. Determine concordance C_{pr}

and discordance D_{pr} sets by using follows formulae:

$$C_{pr} = \left\{ j \mid xpj \ge xrj \right\},\tag{12}$$

$$D_{pr} = J - S_{pr} = \left\{ j \mid xpj < xrj \right\}.$$
⁽¹³⁾

Step 5. Define the concordance matrix c_{pr} on the basis of the concordance sets. The elements of this matrix are the concordance indices and it is calculated as

$$c_{pr} = \sum_{j \in Cpr} w_j.$$
⁽¹⁴⁾

Step 6. Determine the discordance matrix d_{pr} on the basis of the discordance sets. The elements of the matrix are the discordance indices determined by the following formula:

$$d_{pr} = \frac{\max_{j \in Dpr} [w_{pj} - w_{rj}]}{\max_{j \in J} [w_{pj} - w_{rj}]}.$$
(15)

Step 7. Determine the matrix of concordance domination, on the basis of the average index of concordance - *AIC* by using formula (where $p \neq r$).

$$AIC = \sum_{p=1}^{m} \sum_{r=1}^{m} \frac{c_{pr}}{m(m-1)},$$
(16)

Step 8. Analogously to the matrix of concordance domination, there is a need for determination of the matrix of discordance domination on the basis of the average index of discordance-*AID*, (where $p \neq r$) as follows:

$$AID = \sum_{p=1}^{m} \sum_{r=1}^{m} \frac{d_{pr}}{m(m-1)},$$
(17)

Step 9. Determine the matrix of aggregate domination $-mad_{pr}$ whose elements are equal to the product of the elements on a certain position in matrices of agreement and disagreement domination:

$$mad_{pr} = msd_{pr} \cdot mnsd_{pr}.$$
⁽¹⁸⁾

Step 10. Less desirable actions are eliminated, while one or more alternatives are separated as most desirable. Therefore, the ELECTRE I method provides a partial order of actions.

6. A NUMERIC APPLICATION OF PROPOSED METHODS

Tourism potential of Gamzigrad spa is not properly used. Future development of this spa requires realization of suitable projects which could promote different tourism capacities of this area. TOPSIS and ELECTRE are

·

used in ranking of the development strategies in order to improve the presence position of this spa and East Serbia region as well. The available alternative projects, defined by management team of the spa, are: A_1 – health tourism; A_2 – sports tourism; A_3 – recreation tourism; A_4 – country tourism; A_5 – congress tourism. The following five criteria were defined for evaluation of the projects: C_1 – financial investments (ϵ). Project that requires less investments are more desirable; C_2 – solution delivery (ϵ). Second best investment solution for the observed projects. As previous, project that requires less investment has the advantage; C_3 - strategic contribution. Project with higher contribution to the development of the Gamzigrad spa is desirable; C_4 - risk management. The project with the least risk has the advantage; C_5 environment. Project that more relies on the environment potentials is more desirable. Presented methods are applicable to any decision making problem, not only to strategies determination presented here.

Determination of the criteria weights

Three experts in the field of tourism resources management are consulted in order to determine the relative importance of all possible pairs of criteria with respect to the overall goal. Their judgments are arranged into the matrixes and presented in Tables 8, 9 and 10. The relative normalized weight w_i of each criterion j is calculated by using formulae (1) and (2). The consistency ratio CR is checked by formulae (3) and (4). Three different judgments and therefore, different weights, are reduced to a common weight by using

formula (1).

Table 5. Pairwise matrix - Expert 1

	C_1	C_2	<i>C</i> ₃	C_4	C_5	W_{j}	
C_1	1	1/7	1	5	1	0.136	
C_2	7	1	3	7	7	0.539	
<i>C</i> ₃	1	1/3	1	5	3	0.190	
C_4	1/5	1/7	1/5	1	1/3	0.042	
C_5	1	1/7	1/3	3	1	0.093	
CR = 9.30%							

R = 9.30%	
-----------	--

Table 6. Pairwise matrix - Expert 2								
	C_1	C_2	<i>C</i> ₃	C_4	C_5	W_{j}		
C_1	1	1/7	1/3	1	1	0.072		
C_2	7	1	5	7	7	0.580		
<i>C</i> ₃	3	1/2	1	3	3	0.188		
C_4	1	1/7	1/3	1	1/3	0.061		
C_5	1	1/7	1/3	3	1	0.099		
CR = 7.39%								
	Tab	<u>le 7. P</u>	airwis	e matr	ix - Ex	pert 3		
	C_1	C_2	<i>C</i> ₃	C_4	C_5	w_{j}		
C_1	1	1/7	1/3	3	1	0.091		
C_2	7	1	5	7	7	0.569		
<i>C</i> ₃	3	1/2	1	5	3	0.204		
C_4	1/3	1/7	1/2	1	1/3	0.045		
C_5	1	1/7	1/3	3	1	0.091		
CR = 9.50%								

T 11 (D '

Table 8 presents final weights of observed criteria calculated by formula (1).

Criteria	Weights				
C_1	0.100				
C_2	0.094				
C_3	0.049				
C_4	0.194				
C_5	0.563				
Σ	1				

Table 8. Weights of criteria

Ranking by TOPSIS Method

Table 9 presents the raw data which are base for decision making process. Qualitative data is changed into quantitative by using numerical scale shown in the Table 4 (see Table 10). Normalized decision matrix (Table 11) is calculated by using formula (5).

Table 9. Raw data								
	Financial invest. (€)	Solution delivery (€)	Strategic contribut.	Risk managem.	Environ.			
	min	min	max	min	max			
Health tourism	200.000	250.000	High	Average	Very High			
Sports tourism	70.000	90.000	Very high	Average	High			
Recreation tourism	60.000	70.000	Very high	Low	Very high			
Country tourism	120.000	140.000	High	Low	High			
Congress tourism	40.000	60.000	High	Low	Very high			

	Criteria				
Alternatives	C_1	C_2	C_3	C_4	C_5
	min	min	max	min	max
A_1	200.000	250.000	7	5	9
A_2	70.000	90.000	9	5	7
A_3	60.000	70.000	9	3	9
A_4	120.000	140.000	7	3	7
A_5	40.000	60.000	7	3	9

Alternatives	C_1	C_2	C_3	C_4	C_5
	min	min	max	min	max
A_1	200.000	250.000	7	5	9
A_2	70.000	90.000	9	5	7
A_3	60.000	70.000	9	3	9
A_4	120.000	140.000	7	3	7
A_5	40.000	60.000	7	3	9

Table 11. Normalized decision matrix						
			Criteria			
Alternatives	C_1	C_2	C_3	C_4	C_5	
	min	min	max	min	max	
A_1	0.7875	0.7958	0.3982	0.5698	0.4874	
A_2	0.2756	0.2865	0.5120	0.5698	0.3791	
A_3	0.2362	0.2228	0.5120	0.3419	0.4874	
A_4	0.4725	0.4456	0.3982	0.3419	0.3791	
A_5	0.1575	0.1910	0.3982	0.3419	0.4874	

Table 10. Initial decision matrix

Steps 1 and **2** are done. **Step 3.** The weighted normalized decision matrix is calculated by formula (6) and shown in Table 12. **Step 4.** The ideal A^+ and anti-ideal solutions A^- are determined by formulae (7) and (8), and they are as in Table 13. **Step 5.** The separation measures D_i^+ and D_i^- are determined by using the formulae (9) and (10). The results are shown in Table 14.

Table 12. Weighted hormalized decision matrix							
			Criteria				
	C_1	C_1 C_2 C_3 C_4 C_5					
Weights	0.100	0.094	0.049	0.194	0.563		
Alternatives	min	min	max	min	max		
A_1	0.0787	0.0748	0.0195	0.1105	0.2744		
A_2	0.0276	0.0269	0.0251	0.1105	0.2134		
A_3	0.0236	0.0209	0.0251	0.0663	0.2744		
A_4	0.0472	0.0419	0.0195	0.0663	0.2134		
A_5	0.0157	0.0180	0.0195	0.0663	0.2744		

Table 12. Weighted normalized decision matrix

Table 13. The ideal A^+ and anti-ideal solutions A^-						
A^+	0.0157	0.0180	0.0251	0.0663	0.2744	
A^{-}	0.0787	0.0748	0.0195	0.1105	0.2134	

Table 14. The separation measures and relative closeness to the ideal solution

Alternative	D_i^+	D_i^-
	Ι	II
A_1	0.0958	0.0610
A_2	0.0768	0.0703
A_3	0.0084	0.1079
A_4	0.0729	0.0635
A_5	0.0056	0.1135

Step 6. Relative closeness of a particular solution to the ideal solution C_i is calculated by using formula (11), and it is given in Table 15. According to the results, the rank is followed:

Table 15. Ranking results					
Alternative	C_i	Rank			
A_1	0.3888	5			
A_2	0.4780	3			
A_3	0.9276	2			
A_4	0.4655	4			
A_5	0.9532	1			

Ranking by ELECTRE Method

Available alternatives for improving the conditions in the Gamzigrad spa are ranked by using ELECTRE method. **Step 1**, **2** and **3** of this method are the same as in TOPSIS. **Step 4**. Concordance C_{pr} and discordance sets D_{pr} are determined by applying the formulae (12) and (13) and they are shown in Table 16.

C_{pr}	D_{pr}
$C_{12} = 1, 2, 4, 5$	$D_{12} = 3$
$C_{13} = 1, 2, 4, 5$	$D_{13} = 3$
$C_{14} = 1, 2, 3, 4, 5$	$D_{14} = -$
$C_{15} = 1, 2, 3$	$D_{15} = 4, 5$
$C_{21} = 3, 4$	$D_{21} = 1, 2, 5$
$C_{23} = 1, 2, 3, 4$	$D_{23} = 5$
$C_{24} = 3, 4, 5$	$D_{24} = 1, 2$
$C_{25} = 1, 2, 3, 4$	$D_{25} = 5$
$C_{31} = 3, 5$	$D_{31} = 1, 2, 4$
$C_{32} = 3, 5$	$D_{32} = 1, 2, 4$
$C_{34} = 3, 4, 5$	$D_{34} = 1, 2$
$C_{35} = 1, 2, 3, 4, 5$	$D_{35} = -$
$C_{41} = 3$	$D_{41} = 1, 2, 4, 5$
$C_{42} = 1, 2, 5$	$D_{42} = 3, 4$
$C_{43} = 1, 2, 4$	$D_{43} = 3, 5$
$C_{45} = 1, 2, 3, 4$	$D_{45} = 5$
$C_{51} = 3, 5$	$D_{51} = 1, 2, 4$
$C_{52} = 5$	$D_{52} = 1, 2, 3, 4$
$C_{53} = \overline{4, 5}$	$D_{53} = \overline{1, 2, 3}$
$C_{54} = \overline{3, 4, 5}$	$D_4 = \overline{1, 2}$

Table 16. Concordance and discordance sets

Step 5. Concordance matrix c_{pr} is calculated by using formula (14) and data from tab. 8 and it is as in tab. 17.

	Table 17. Concordance matrix				
	0	0.757	0.563	0.612	0.612
	0.437	0	0.049	0.806	0.049
	1	1	0	1	0.806
	0.437	0.757	0.194	0	0.243
_	1	0.951	0.951	1	0

Step 6. Discordance matrix d_{pr} is calculated by using formula (15) and it is presented in table 18.

Table 18. Discordance matrix					
0	0.840	1	0.725	1	
1	0	1	1	1	
0	0	0	0	1	
1	0.045	1	0	1	
0	0.092	0.708	0	0	

Step 7. The matrix of concordance domination is calculated by using formula (16) and presented in table 19.

Table 19. Matrix of concordance domination					
0	1	0	0	0	
0	0	0	1	0	
1	1	0	1	1	
0	1	0	0	0	
1	1	1	1	0	

Step 8. The matrix of discordance domination is obtained by using formula (17) and it is presented in tab. 20.

Table 20. Matrix of discordance domination					
0	0	0	0	0	
0	0	0	0	0	
1	1	0	1	0	
0	1	0	0	0	
1	1	0	1	0	

Step 9. Matrix of aggregate domination mad_{pr} is determined by using formula (18) (table 21):

Table 21. Matrix of aggregate domination						
A_1	0	0	0	0		
0	A_2	0	0	0		
1	1	A_3	1	0		
0	1	0	A_4	0		
1	1	0	1	A_5		

Step 10. Table 22 shows recommended projects that are obtained by eliminating less desirable alternatives.

Table 22. Ranking results				
$A_3 \rightarrow A_1, A_2, A_4$	Dominate under A_1, A_2, A_4			
$A_5 \rightarrow A_1, A_2, A_4$	Dominate under A_1, A_2, A_4			
A_2	Not dominant			
$A_4 \rightarrow A_2$	Dominate under A_2			
A_1	Not dominant			

7. CONCLUSION

A decision model presented in the paper is provided for strategy determination for improvement the business position of Gamzigrad spa. TOPSIS and ELECTRE decision-making methods have been used in the proposed model as the tools that can help in making the right choice. The obtained results are not completely identical. TOPSIS shows alternative A_5 – congress tourism as the most appropriate choice for the present conditions and alternative A_3 – recreation tourism is in the second place. The first two places are the same in the ELECTRE but other three alternatives have different ranking. Application of the ELECTRE method was relative successful because precise ranking was not determined. But, solution gained by the TOPSIS is more accurate and elegant because it gives the precision ranks of observed alternatives. Efficiency of the strategy selection is significantly increased by using the proposed methods. These methods could consider any number of different criteria and offers a more objective, simple and reliable strategy selection approach. Proposed methods could be combined with different mathematical models for improving the decision making quality.

REFERENCES

- Chen F-H., Hsu T-S., Tzeng G-H, A balanced scorecard approach to establish a performance evaluation and relationship model for hot spring hotels based on a hybrid MCDM model combining DEMATEL and ANP, *International Journal of Hospitality Management*, Vol. 30, No. 4, 2011, pp. 908-932.
- Zhang H., Gu C., Gu L., Zhan Y., The evaluation of tourism destination competitiveness by TOPSIS & information entropy – A case in the Yangtze River Delta of China, *Tourism Management*, Vol. 32, No. 2, 2011, pp. 443-451.

- Chen C-F., Applying the Analytical Hierarchy Process (AHP) Approach to Convention Site Selection, Journal of Travel Research, Vol. 45, No. 2, 2006, pp. 167-174.
- Law R., Qi S., Buhalis D., Progress in tourism management: A review of website evaluation in tourism research, *Tourism Management*, Vol. 31, No. 3, 2010, pp. 297-313.
- Hsieh L-F., Lin L-H., Lin Y-Y., A service quality measurement architecture for hot spring hotels in Taiwan, *Tourism Management*, Vol. 29, No. 3, 2008, pp. 429-438.
- Popović. G., Stanujkic, D., Jovanović, R., Ore deposit selection by using combined TOPSIS and AHP method, *Rudarski radovi*, Vol. 3, No. 1, 2012, pp. 203-222.
- Popović G., Stanujkić D., Stojanović S., Investment project selection by applying COPRAS method and imprecise data, *Serbian Journal of Management*, Vol. 7, No. 2, 2012, pp. 257-269.
- Saaty T.L., A scaling method for priorities in hierarchial structures, *Journal of Mathematical Psychology*, Vol. 15, 1977, pp. 234-281.
- Saaty T.L., The Analytic Hierarchy Process, New York, McGraw Hill, 1980.
- Huang Y.S., Liao J.T., Lin Z.L., A study on aggregation on group decisions, Systems Research and Behavioral Science, Vol. 26, No. 4, 2009, pp. 445-454.
- Hwang C.L., Yoon K., *Multiple attribute decision making: Methods and* applications, *A State of the Art Survey*, New York: Springer-Verlag, 1981.
- Ertugrul I., Karakasoglu N. Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods, *Expert Systems with Applications*, Vol. 36, No.1, 2007, pp. 702–715.
- Dağdeviren M., Yavuz S., Kılınç N., Weapon selection using the AHP and TOPSIS methods under fuzzy environment, *Expert Systems with Application*, Vol. 36, 2009, pp. 8143-8151.
- Jahanshahloo G.R., Hosseinzadeh Lotfi F., Izadikhah M., An algorithmic method to extend TOPSIS for decision-making problems with interval data, *Applied Mathematics and Computation*, Vol. 175, No. 1, 2006, pp. 1375-1384.
- Roy B., Classement et choix en présence de points de vue multiples (la méthode ELECTRE), La Revue d'Informatique et de Recherche Opérationelle (RIRO), Vol. 8, 1968, pp. 57–75.