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Abstract: The zeroing neural network (ZNN) is an important kind of continuous-time recurrent

neural network (RNN). Meanwhile, the existence of forward and backward simulations and bisimula-

tions for weighted finite automata (WFA) over the field of real numbers has been widely investigated.

Two types of quantitative simulations and two types of bisimulations between WFA are determined as

solutions to particular systems of matrix and vector inequations over the field of real numbers R. The

approach used in this research is unique and based on the application of a ZNN dynamical evolution

in solving underlying matrix and vector inequations. This research is aimed at the development

and analysis of four novel ZNN dynamical systems for addressing the systems of matrix and/or

vector inequalities involved in simulations and bisimulations between WFA. The problem considered

in this paper requires solving a system of two vector inequations and a couple of matrix inequa-

tions. Using positive slack matrices, required matrix and vector inequations are transformed into

corresponding equations and then the derived system of matrix and vector equations is transformed

into a system of linear equations utilizing vectorization and the Kronecker product. The solution to

the ZNN dynamics is defined using the pseudoinverse solution of the generated linear system. A

detailed convergence analysis of the proposed ZNN dynamics is presented. Numerical examples

are performed under different initial state matrices. A comparison between the ZNN and linear

programming (LP) approach is presented.

Keywords: weighted finite automata; Zhang neural network; forward simulation; backward simulation;

pseudoinverse

MSC: 65F20; 68T05; 68Q70

1. Preliminaries on Weighted Finite Automata and Zeroing Neural Networks

Simulations between WFA ensure its containment, while bisimulations ensure the
equivalence of WFA. As a result of the transition from various boolean to quantitative
systems, both simulations and bisimulations become quantitative. Corresponding models
are based on the use of matrices whose entries supply a quantitative measurement of the
relationship between states of underlying systems.

Hereafter, R denotes the field of real numbers, and N denotes the set of natural num-
bers without zero, while the set of all positive real numbers is denoted by R+. Additionally,
X = {x1, . . . , xr} is a non-empty finite set with k elements, where k ∈ N, called an alphabet,
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while X+ = {x1x2 . . . xs | s ∈ N, x1, x2, . . . , xs ∈ X} is the set of all finite sequences of
elements of X, which are called words over the alphabet X, and X∗ = X+ ∪ {ε}, where
ε /∈ X+ is a symbol that denotes the empty word of length 0. With respect to the conven-
tional concatenation operation on words (sequences), X+ forms a semigroup, while X∗ is a
structure representing a monoid with the identity element ε.

A weighted finite automaton over the field of real numbers R and the alphabet X is
defined as a quadruple A =

(

m, σ
A, {MA

x }x∈X , τ
A
)

, where m ∈ N denotes the dimension
of A ; σ

A ∈ R1×m, τ
A ∈ Rm×1 are the initial vector and terminal vector, respectively, and

{MA
x }x∈X ⊂ Rm×m is a collection of transition matrices. The initial vector σ

A is treated as a
row vector, while the terminal vector τ

A is treated as a column vector. The behavior of a
weighted finite automaton is expressed as the product σ

A, representing the initial weights,
matrices {MA

x }x∈X representing the weights of the transitions induced by input letters,
and the column vector τ

A representing the terminal weights.
The collection {MA

x }x∈X is extended up to a collection {MA
u }u∈X∗ ⊂ Rm×m of com-

pound transition matrices expressed as

MA
u =

{

Im, u = ε,

MA
x1

MA
x2
· · · MA

xs
, u = x1x2 · · · xs ∈ X+,

(1)

where Im denotes the m × m identity matrix. The matrices MA
u , u ∈ X∗, defined in (1), are

known as the compound transition matrices of A . The multiplication of transition matrices
carry numerical values over R, known as weights. A function f : X∗ → R is called a word
function. In particular, each weighted finite automaton A =

(

m, σ
A, {MA

x }x∈X , τ
A
)

gives
rise to a word function JAK : X∗ → R defined as follows:

JAK(u) =

{

σ
A MA

u τ
A = σ

A MA
x1

MA
x2
· · · MA

xs
τ

A, u = x1x2 . . . xs ∈ X+,

σ
A MA

ε τ
A = σ

A
τ

A, u = ε.
(2)

The word function JAK defined in (2) is called the behavior of A , or a word function computed
by A . The behavior of an automaton is a mapping that relates a weight to words over
a semiring.

Consider the weighted finite automata (WFA) A =
(

m, σ
A, {MA

x }x∈X , τ
A
)

and
B =

(

n, σ
B, {MB

x }x∈X , τ
B
)

over the field of real numbers R and X. The following no-
tations are used:

JAK = JBK ⇐⇒ JAK(u) = JBK(u), for every u ∈ X∗;
JAK ⩽ JBK ⇐⇒ JAK(u) ⩽ JBK(u), for every u ∈ X∗.
WFA A and B over R and the alphabet X are said to be equivalent if JAK = JBK.

On the other hand, if JAK ⩽ JBK, then A is said to be contained in B . The problem of
determining whether WFA are equivalent is called the equivalence problem, and the problem
of determining whether one of two WFA is contained in another is called the containment
problem. A solution to the equivalence problem decides whether two WFA compute the
same word function. On the other hand, a solution to the containment problem determines
whether the word function computed by one WFA is less than or equal to the word function
corresponding to the other WFA

A matrix (resp. vector) is said to be a positive matrix (resp. positive vector) if all its
entries are positive real numbers, and a weighted finite automaton A is said to be a positive
automaton if its initial and terminal vectors, as well as all its transition matrices, are positive.

Weighted automata have been applied to describe quantitative properties in various
systems, as well as to represent probabilistic models, image compression, speech recogni-
tion, and finite representations of formal languages. Context–free grammars are used in
the development of programming languages as well as in artificial intelligence.

The theoretical foundations of current investigations involve two types of simulations
and two types of bisimulations defined in [1], in the general context of WFA over a semiring.
The approach we use consists of defining quantitative simulations and bisimulations as
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matrices that are solutions to certain systems of matrix inequations. Such an approach
was introduced in [2], where quantitative simulations and bisimulations between fuzzy
finite automata were introduced and their basic properties were examined. Algorithms for
testing their existence were developed in [3]. The same algorithms compute the greatest
simulations and bisimulations in cases when they exist. Then, the same approach was
applied to the study of bisimulations and simulations for non-deterministic automata [4],
WFA over an additively idempotent semiring [5], and max-plus automata [6], as well as for
WFA over an arbitrary semiring [1,7], which encompass all the previous ones. It turns out
that an almost identical methodology can also be applied to social networks [8]. In [9], it
was proven that two probabilistic finite automata are equivalent if and only if there is a
bisimulation between them, where the bisimulation is defined as a classical binary relation
between the vector spaces corresponding to those automata.

In the present paper, we investigate forward and backward simulations and bisimula-
tions for WFA over the field of real numbers. It is worth noting that there are some very
important specifics in this case. For most WFA types, the problem of equivalence (determining
whether two automata compute the same word function) and the minimization problem
(determining an automaton with the minimal number of states equivalent to a given au-
tomaton) are computationally hard. In these cases, bisimulations have two very important
roles. The first role is to provide an efficient procedure for witnessing the existence of
the equivalence of two automata, and the second one is to provide an efficient way to
construct an automaton equivalent to a given one, with a not necessarily minimal but
reasonably smaller number of states. However, it is not the case with WFA over the field
of real numbers, for which there are efficient algorithms for testing the equivalence and
performing minimization. Despite this observation, the importance of bisimulations for
these automata is not diminished. Bisimulations are still needed as a means of determining
the measure of similarity between the states of different automata, which algorithms for
testing the equivalence are unable to do. In the context of weighted automata over the field
of real numbers, such measures have already been studied in [10] by means of bisimulation
seminorms and pseudometrics, and in [11] by means of linear bisimulations; in our upcom-
ing research, we will deal with the relationships between bisimulation seminorms, linear
bisimulations, and our concepts of bisimulations.

Following the definitions of simulations and bisimulations over various algebraic
structures, an analogous approach has been used in defining simulations and bisimulations
for WFA over the field of real numbers. The problem of simulations and bisimulations for
WFA over the field of real numbers reduces to the system of two vector inequations and a
number of matrix inequations. There is a notable lack of numerical methods for solving
simulation and bisimulationproblems. Urabe and Hasuo proposed the idea of reducing
the problem of testing the existence of simulations to the problem of linear programming
(LP) and implemented it in [7] (Section 5). Seen more generally, the research described in
this paper shows that the ZNN design is usable in solving systems of matrix and vector
inequations in linear algebra. Our goal is to show that the zeroing neural network (ZNN)
dynamics are an effective tool to decide on the containment or equivalence between WFA.
A comparison between the ZNN and LP approach is presented.

On the other hand, the application of dynamical systems is a robust tool for solving
various matrix algebra problems, primarily owing to the global exponential convergence,
parallel distributed essence, convenience of hardware implementation, suitability for online
computations involving TV objects, and possibility of providing convergence in a finite
time frame [12,13]. First, ZNN models have been used to solve the TV matrix inversion
problem [14]. Standard and finite-time convergent ZNN dynamical systems aimed at
solving time-varying (TV) linear matrix equations have been widely investigated [12,15–18].
The applications of ZNN design, mainly focusing on robot manipulator path tracking,
motion planning, and chaotic systems, were surveyed in [19]. ZNN dynamical systems for
solving TV linear matrix–vector inequalities (TVLMVI) and TV linear matrix inequalities
(TVLMI) have been broadly investigated [12,15,20–27]. Moreover, various ZNN models
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for solving TVLMI have been applied, mainly in obstacle avoidance for redundant robots
and robot manipulator control [12,28,29]. Typically, TVLMVI and TVLMI of type “≤” are
solved by utilizing an additional matrix or vector of appropriate dimensions with non-
negative entries. A TV matrix inequality of the Stein form A(t)X(t)B(t) + X(t) ≤ C(t) was
considered in [21]. A TVLMVI problem of the general form A(t)x(t) ≤ b(t) was considered
in [24,26,27]. Two ZNN models for solving systems of two TVLMVI were developed in [15].
In [22], the authors proposed ZNNs for solving TV nonlinear inequalities. Finite-time
dynamics for solving general TVLMVI A(t)X(t)B(t) ≤ C(t) were proposed in [25]. A
comparison between ZNN and gradient-based networks for solving A(t)x(t) ≤ b(t) was
investigated in [23]. The computational time for solving TV equations increases due to the
large number of calculations of TV requirements [30].

The problem under consideration is more complex because it requires us to solve
systems of linear matrix and vector inequations. The structure of ZNN models developed
in the current research is based on composite models with a prescribed number of error
functions in matrix form and two in vector form. The ZNN dynamics aim to force the
convergence of the involved error functions to zero over the considered time interval [13].
But the ZNN model in this paper aims to solve several matrix–vector equations that are
inconsistent in the general case. Our strategy is to utilize ZNN neurodynamics to generate
simulations between two WFA with weights over real numbers. In this way, our objective
involves the topic of numerical linear algebra.

This research is aimed at the development and analysis of four novel ZNN models for
addressing the systems of matrix and vector inequalities involved in simulations between
WFA. The problem considered in this paper is specific and complex, and it requires solving
a system of two vector inequations and a couple of matrix inequations. Using positive slack
matrices, matrix and vector inequalities are transformed into corresponding equalities.
In this case, it is useful to utilize the development of ZNN dynamics based on several
inequalities and Zhang error functions. ZNN algorithms established upon a few error
functions have been investigated in several studies, such as [31–34]. Our motivation for
the application of ZNN arises from a verified fact that it is a powerful tool for solving
various matrix algebra models, possessing global exponential convergence and a parallel
distributed structure [12,13]. Therefore, it is interesting to construct the ZNN evolution
for such a problem and study its behavior. A detailed convergence analysis is considered.
Numerical examples are performed with different initial state matrices.

The main results are emphasized as follows.

(1) Two types of quantitative simulations and two types of bisimulations between WFA
are determined as solutions to particular systems of several matrix and two vector
inequations over R.

(2) The approach used to solve the problem of simulations and bisimulations in this
research is unique and based on the application of the ZNN dynamical evolution in
solving underlying matrix and vector inequations.

(3) A detailed convergence analysis of the proposed ZNN dynamics is presented.
(4) Numerical examples are performed under different initial state matrices, and a com-

parison between the ZNN and LP approach is presented.

The overall organization of the sections is as follows. Preliminaries on WFA and ZNN
are presented in Section 1. Global results are highlighted in the same section. Two types of
simulations and four types of bisimulations proposed in [1] in the general context of WFA
over a semiring are generalized in the context of WFA over the field of real numbers in
Section 2. ZNN designs for simulations and bisimulations of WFA over real numbers are
presented in Section 3. Section 4 is aimed at testing the developed ZNN dynamical systems
and making comparisons with the LP solver. Concluding remarks are given in Section 5.

2. Simulations and Bisimulations of WFA over Real Numbers

As a continuation of the research presented in [1], here we correspondingly introduce
definitions of two types of simulations and two types of bisimulations in the context
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of WFA over R. For this purpose, consider two WFA A =
(

m, σ
A, {MA

x }x∈X , τ
A
)

and
B =

(

n, σ
B, {MB

x }x∈X , τ
B
)

over the field of real numbers R and the alphabet X. A matrix
U ∈ Rm×n is called a forward simulation between A and B if it satisfies the following
conditions with respect to U:

(fs-1) σ
A
⩽ σ

BU⊤

(fs-2) U⊤MA
x ⩽ MB

x U⊤ (∀x ∈ X)

(fs-3) U⊤
τ

A
⩽ τ

B,

(3)

and it is termed as backward simulation between A and B if it fulfills

(bs-1) τ
A
⩽ Uτ

B

(bs-2) MA
x U ⩽ UMB

x (∀x ∈ X)

(bs-3) σ
AU ⩽ σ

B.

(4)

Our intention is to apply the notion of transposed automaton from [35] to reverse the
transitions’ flow direction. If both U and U⊤ are forward simulations between A and B

and vice versa, i.e., if they fulfil

(fb-1) σ
A
⩽ σ

BU⊤, σ
B
⩽ σ

AU

(fb-2) U⊤MA
x ⩽ MB

x U⊤, UMB
x ⩽ MA

x U (∀x ∈ X)

(fb-3) U⊤
τ

A
⩽ τ

B, Uτ
B
⩽ τ

A

(5)

then U is termed as a forward bisimulation between A and B , and if both U and U⊤ are
backward simulations between A and B and vice versa, i.e., if they satisfy

(bb-1) τ
A
⩽ Uτ

B, τ
B
⩽ U⊤

τ
A

(bb-2) MA
x U ⩽ UMB

x , MB
x U⊤

⩽ U⊤MA
x (∀x ∈ X)

(bb-3) σ
AU ⩽ σ

B, σ
BU⊤

⩽ σ
A

(6)

then U is known as a backward bisimulation between A and B .
It is important to note that, for any ω ∈ {fs, bs, fb, bb}, the conditions (ω-1), (ω-2),

and (ω-3) can be treated a system of matrix inequations with the unknown matrix U,
and simulations or bisimulations of type ω are precisely solutions to this system. This is
extremely important because simulations between weighted automata over the field of real
numbers are searched for by solving the corresponding systems of matrix inequalities.

Another important note is that the main role of simulations is to witness containment
between automata A and B , while the main role of bisimulations is to witness equivalence
between A and B . However, forward and backward simulations and bisimulations are
defined by matrix inequations. On that note, in order to prove that simulations achieve
containment and bisimulations achieve equivalence, we need the inequations to be pre-
served by multiplying, on either side, by the transition matrices, as well as by the initial
and terminal vectors. Multiplication by matrices and vectors containing negative entries
can violate inequalities, and, therefore, in order for simulations and bisimulations defined
by systems of inequations to make full sense, we consider these types of bisimulations and
simulations only between positive automata.

Theorem 1 is a modified version of [1] (Theorem 1).

Theorem 1. The following statements are valid for positive WFA A and B over R:

(a) For ω ∈ {fs, bs}, if there is a simulation of type ω between A and B , then JAK ⩽ JBK.
(b) For ω ∈ {fb, bb}, if there is a bisimulation of type ω between A and B , then JAK = JBK.
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The modification is reflected in the following. A slightly different version of Theorem 1
was proved in [1] [Theorem 1] for WFA over a positive semiring. Theorem 1 could also
be formulated for A and B as WFA over the positive semiring R+ of nonnegative real
numbers, but such a formulation would mean that the simulations and bisimulations
between A and B should also be over the semiring R+, that is, they should be positive
matrices, which is not necessary. Namely, for positive WFA over an arbitrary ordered
semiring (not necessarily positive), the proof of [1] (Theorem 1) also holds for simulations
and bisimulations that contain negative entries, and Theorem 1 is formulated to allow for
such simulations and bisimulations as well.

As this article is primarily concerned with solving systems of matrix inequations,
nothing important will change if we consider the more general case and allow the transition
matrices, as well as the initial and terminal vectors, to have negative entries, which is
performed below. On the other hand, in some applications of simulations and bisimulations,
for example in the dimensionality reduction for WFA, there is a need to find positive
solutions of the considered systems of matrix inequations. For this reason, we consider
systems with an additional condition requiring the positivity of the solution. It should be
noted that the proposed procedures for solving the systems remain valid even in the case
when this condition is omitted, and in the same way, in that case we obtain solutions that
do not have to be positive.

3. ZNN Designs for Simulations and Bisimulations of WFA over Real Numbers

This section defines and analyzes four novel ZNN models for addressing the

systems of inequations (3)–(6). For the remainder of this section, let A =

(

m, σ
A,
{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

be two WFA over R, where MA
xi
∈ Rm×m, σ

A ∈ R1×m,

τ
A ∈ Rm×1 and MB

xi
∈ Rn×n, σ

B ∈ R1×n, τ
B ∈ Rn×1 with i = 1, . . . r.

Also, it is crucial to mention that the process of building a ZNN model usually involves
two primary steps. The error matrix equation’s (EME) function, E(t), must be initially
declared. Secondly, the dynamic system represented by the continuous differential equation
of the general form

Ė(t) = −λE(t), (7)

needs to be employed. The dynamical evolution (7) relates the time derivative Ė(t) to E(t)
in proportion to the positive real coefficient λ. The convergence rate of the dynamical
system (7) is altered by manipulating the parameter λ ∈ R+. More precisely, with increasing
values of λ, any ZNN model converges even faster [13,36,37]. The primary goal of the
dynamics (7) is to force E(t) to approach 0 as t → ∞. The continuous learning principle that
emerges from the EME’s construction in Equation (7) is used to manage this goal. EME is,
therefore, considered as a tracking indication in the context of the ZNN model’s learning.

Special attention should be paid to a few notations that are used in the remainder of
this work. The p × 1 matrices with all ones and all zeros as entries are indicated by 1p and
0p, whereas the p × r matrices with all ones and all zeros as entries are indicated by 1p,r and
0p,r. Furthermore, the p× p identity matrix is indicated by Ip, whereas vec(),⊗,⊙, ( )⊙, ( )†,
and ∥∥F stand for the vectorization process, the Kronecker product, the Hadamard (or ele-
mentwise) product, the Hadamard exponential, pseudoinversion, and the matrix Frobenius
norm, respectively. Finally, rand(m, n) denotes an m × n matrix whose entries consist of
random numbers.

3.1. The ZNN-fs Model

In line with (3), the following group of inequations must be satisfied:
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

















UT(t)τA − τ
B ⩽ 0n,

σ
A − σ

BUT(t) ⩽ 0T
m,

UT(t)MA
xi
− MB

xi
UT(t) ⩽ 0n,m, i = 1, . . . , r,

U(t) ⩾ 0m,n,

(8)

with respect to an unknown matrix U(t) ∈ Rm×n. Utilizing the vectorization in conjunction
with the Kronecker product, the system (8) is reformulated into the vector inequations form























(

(τA)T ⊗ In

)

vec(UT(t))− τ
B ⩽ 0n,

−
(

Im ⊗ σ
B
)

vec(UT(t)) + (σA)T ⩽ 0m,
(

(MA
xi
)T ⊗ In − Im ⊗ MB

xi

)

vec(UT(t)) ⩽ 0mn, i = 1, . . . , r,

−vec(U(t)) ⩽ 0mn.

(9)

To calculate U(t) more efficiently, (9) must be simplified. Thus, the vectorization-
related Lemma 1 derived from [38] is given.

Lemma 1. The vectorization vec(WT) ∈ Rmn of the transpose WT of W ∈ Rm×n is defined by

vec(WT) = P vec(W), (10)

where P ∈ Rmn×mn is a constant permutation matrix that depends on the number of columns n
and number of rows m in W.

The algorithmic procedure for generating the permutation matrix P in (10) is presented
in the following Algorithm 1.

Algorithm 1 The permutation matrix P formation.

Input: The number of rows m and columns n of a matrix W ∈ Rm×n.
1: procedure PERM_MAT(m, n)
2: Put g =eye(mn) and W =reshape(1 : mn, n, m)
3: return P = g(:,reshape(WT, 1, mn))
4: end procedure

Output: P

Using the permutation matrix P for generating vec(UT(t)), inequations (9) can be
rewritten in the form























(

(τA)T ⊗ In

)

P vec(U(t))− τ
B ⩽ 0n,

−
(

Im ⊗ σ
B
)

P vec(U(t)) + (σA)T ⩽ 0m,
(

(MA
xi
)T ⊗ In − Im ⊗ MB

xi

)

P vec(U(t)) ⩽ 0mn, i = 1, . . . , r,

−vec(U(t)) ⩽ 0mn,

(11)

wherein the last constraint imposes non-negativity on the solution. The corresponding
block matrix form of (11) is given by

L fs vec(U(t))− b fs ⩽ 0z, (12)

such that z = (r + 1)mn + m + n and
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L fs=









((τA)T⊗In)P

−(Im⊗σ
B)P

W fs

−Imn









∈Rz×mn, b fs=





τ
B

−(σA)T

0(r+1)mn



∈Rz, W fs=









((MA
x1
)T⊗In−Im⊗MB

x1
)P

((MA
x2
)T⊗In−Im⊗MB

x2
)P

. . .

((MA
xr
)T⊗In−Im⊗MB

xr
)P









∈Rrmn×mn. (13)

Then, considering the vector of slack variables K(t) =





k1(t)
. . .

kz(t)



 ∈ Rz, the inequation (12)

can be converted into the corresponding equation

L fs vec(U(t))− b fs + K⊙2(t) = 0z, (14)

in which K⊙2(t) =





k2
1(t)
. . .

k2
z(t)



 is the time-varying term with secured non-negative entries.

Thereafter, the ZNN approach considers the following EME, which is based on (12),
to simultaneously satisfy all the inequations in (8):

E fs(t) = L fs vec(U(t))− b fs + K⊙2(t), (15)

where U(t) and K(t) are the unknown matrices that need to be found. The ZNN design (7)
exploits the first time derivative of (15)

Ė fs(t) = L fsvec(U̇(t)) + 2(Iz ⊙ K(t))K̇(t). (16)

Combining Equations (15) and (16) with the generic ZNN design (7), we obtain

L fsvec(U̇(t)) + 2(Iz ⊙ K(t))K̇(t) = −λE fs(t). (17)

As a result, setting

H fs=
[

L fs 2(Iz⊙K(t))
]

∈Rz×(mn+z), ẋ(t)=

[

vec(U̇(t))
K̇(t)

]

∈Rmn+z, x(t)=

[

vec(U(t))
K(t)

]

∈Rmn+z,

the next system of linear equations with respect to ẋ is obtained:

H fs ẋ = −λE fs(t). (18)

The ZNN dynamics are applicable in solving (18) if the mass matrix H fs is invertible. To
avoid this restriction, it is appropriate to use the pseudoinverse (best approximate) solution

ẋ = H†
fs

(

−λE fs(t)
)

. (19)

An appropriate ode MATLAB R2022a solver can be used to handle the ZNN dynamics
(19), additionally referred to as the ZNN-fs model. The ZNN-fs model’s convergence and
stability investigation is shown in Theorem 2.

Theorem 2. Let A =

(

m, σ
A,

{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

be the

WFA over R and the alphabet X = {x1, . . . , xr}, where MA
xi
∈ Rm×m, σ

A ∈ R1×m, τ
A ∈ Rm×1

and MB
xi

∈ Rn×n, σ
B ∈ R1×n, τ

B ∈ Rn×1 with i = 1, . . . , r. The dynamics
(17) in linewith the ZNN method (7) lead to the theoretical solution (TSOL), determined by

xS (t) =
[

vec(US (t))
T KT

S (t)
]T

, which is stable according to Lyapunov.



Mathematics 2024, 12, 2110 9 of 26

Proof. Let


















UT
S (t)τ

A − τ
B ⩽ 0n,

σ
A − σ

BUT
S (t) ⩽ 0T

m,

UT
S (t)MA

xi
− MB

xi
UT
S (t) ⩽ 0n,m, i = 1, . . . , r,

US (t) ⩾ 0m,n.

(20)

Using vectorization, Kronecker product, and the permutation matrix P for constructing
vec(UT(t)), defined by Algorithm 1, the system (20) is reformulated as























(

(τA)T ⊗ In

)

P vec(US (t))− τ
B ⩽ 0n,

−
(

Im ⊗ σ
B
)

P vec(US (t)) + (σA)T ⩽ 0m,
(

(MA
xi
)T ⊗ In − Im ⊗ MB

xi

)

P vec(US (t)) ⩽ 0mn, i = 1, . . . , r,

−vec(US (t)) ⩽ 0mn.

(21)

The equivalent form of (21) is

L fsvec(US (t))− b fs ⩽ 0z (22)

where L fs and b fs are declared in Equation (13). Then, considering the slack variable
KS (t) ∈ Rz, the inequation (22) can be converted into the equation

L fs vec(US (t))− b fs + K⊙2
S (t)(t) = 0z,

in which K⊙2
S (t) is always a non-negative time-varying term.

The substitution

xO(t) := −x(t) + xS (t) =

[

−vec(U(t)) + vec(US (t))
−K(t) + KS (t)

]

: =

[

vec(UO(t))
KO(t)

]

gives

x(t) = xS (t)− xO(t) =

[

vec(US (t))− vec(UO(t))
KS (t)− KO(t)

]

.

The 1st derivative of x(t) is equal to

ẋ(t) = ẋS (t)− ẋO(t) =

[

vec(U̇S (t))− vec(U̇O(t))
K̇S (t)− K̇O(t)

]

.

As a result, after substituting (14) for x(t) = xS (t)− xO(t), the following holds

ES (t)=L fs(vec(US (t))−vec(UO(t)))−b fs+(KS (t)−KO(t))
⊙2,

or
ES (t)=

[

L fs (Iz⊙(KS (t)−KO(t)))
]

(xS (t)−xO(t))−b fs,

where L fs and b fs are declared in (13). Then, the following results follow from (7):

ĖS (t)=L fsvec
(

U̇(t)+U̇(t)
)

+2(Iz⊙(KS (t)−KO(t)))
(

K̇S (t)−K̇O(t)
)

=−λES (t),

or equivalently

ĖS (t)=
[

L fs 2(Iz⊙(KS (t)−KO(t)))
]

(ẋS (t)−ẋO(t))=−λES (t). (23)

Next, for confirming the convergence, we choose the plausible Lyapunov function

Z(t) =
1

2
∥ES (t)∥

2
F =

1

2
tr
(

ES (t)(ES (t))
T
)

.



Mathematics 2024, 12, 2110 10 of 26

The following is confirmed for Z(t):

Ż(t)=
2tr

(

(ES (t))
TĖS (t)

)

2
=tr

(

(ES (t))
TĖS (t)

)

=−λtr
(

(ES (t))
TES (t)

)

. (24)

Because of (24), the following is valid:

Ż(t)

{

< 0, ES (t) ̸= 0,

= 0, ES (t) = 0,

⇔Ż(t)







< 0,
[

L fs (Iz ⊙ (KS (t)− KO(t)))
]

(xS (t)− xO(t))− b fs ̸= 0,

= 0,
[

L fs (Iz ⊙ (KS (t)− KO(t)))
]

(xS (t)− xO(t))− b fs = 0,

⇔Ż(t)



















< 0,
[

L fs (Iz ⊙ (KS (t)− KO(t)))
]

[

vec(US (t))− vec(UO(t))

KS (t)− KO(t)

]

− b fs ̸= 0,

= 0,
[

L fs (Iz ⊙ (KS (t)− KO(t)))
]

[

vec(US (t))− vec(UO(t))

KS (t)− KO(t)

]

− b fs = 0,

⇔Ż(t)























< 0,

[

vec(UO(t))

KO(t)

]

̸= 0,

= 0,

[

vec(UO(t))

KO(t)

]

= 0.

⇔Ż(t)

{

< 0, xO(t) ̸= 0,

= 0, xO(t) = 0.

With xO(t) being the equilibrium point of the system (23), we have

∀ xO(t) ̸= 0, Ż(t) ≤ 0.

It appears that the equilibrium state

xO(t) = −x(t) + xS (t) =

[

−vec(U(t)) + vec(US (t))
−K(t) + KS (t)

]

= 0

is stable in accordance with Lyapunov theory. Afterwards, when t → ∞, the following
holds:

x(t) =

[

vec(U(t))
K(t)

]

→ xS (t) =

[

vec(US (t))
KS (t)

]

,

which finalizes the proof.

Theorem 3. Let A =

(

m, σ
A,

{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

be the WFA

over R and X = {x1, . . . , xr}, where MA
xi
∈ Rm×m, σ

A ∈ R1×m, τ
A ∈ Rm×1 and MB

xi
∈ Rn×n,

σ
B ∈ R1×n, τ

B ∈ Rn×1 with i = 1, . . . , r. Beginning from any initial point x(0), the ZNN-fs
model of (19) converges exponentially to x∗(t), which refers to the TSOL of (3).

Proof. Firstly, the system of (8) is considered to find the solution x(t) = [vec(U(t))T, KT(t)]T

that is affiliated to the time-varying backward-forward bisimulation between A and B of
(3). Secondly, the system of (8) is reformulated into the system of (9) utilizing vectorization
and the Kronecker product and, then, into the system of (12) utilizing the operational
permutation matrix P for vec(UT(t)). Thirdly, considering the slack variable K(t), the in-
equality constraint of the system of (12) is converted into an equality constraint in the
system of (14). Fourthly, the EME of (15) is constructed, in keeping with the ZNN technique
and the system of (14), to generate the solution x(t) that is affiliated with the system of (3).
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Fifthly, the model of (17) is yielded in accordance to the ZNN technique of (7) for zeroing
(15). According to Theorem 2, the EME of (15) converges to zero as t → ∞. Consequently,

the solution of (19) converges to x∗(t) =
[

vec(U∗(t))T, (K∗(t))T
]T

as t → ∞. Furthermore,
it is obvious that (19) is (17) in a different form because of the derivation process. After that,
the proof is accomplished.

3.2. The ZNN-bs Model

In line with (4), the following group of inequations must be satisfied:



















τ
A − U(t)τB ⩽ 0m,

σ
AU(t)− σ

B ⩽ 0T
n ,

MA
xi

U(t)− U(t)MB
xi
⩽ 0m,n, i = 1, . . . , r,

U(t) ⩾ 0m,n,

(25)

where U(t) ∈ Rm×n denotes the unknown matrix to be found. Utilizing vectorization and
the Kronecker product, the system of inequations (25) is rewritten in the equivalent form























−
(

(τB)T ⊗ Im

)

vec(U(t)) + τ
A ⩽ 0m,

(In ⊗ σ
A)vec(U(t))− (σB)T ⩽ 0n,

(

In ⊗ MA
xi
− (MB

xi
)T ⊗ Im

)

vec(U(t)) ⩽ 0mn, i = 1, . . . , r,

−vec(U(t)) ⩽ 0mn,

and its corresponding matrix form is

Lbsvec(U(t))− bbs ⩽ 0z, (26)

where

Lbs=









−(τB)T⊗ Im

In⊗σ
A

Wbs

−Imn









∈Rz×mn, bbs=





−τ
A

(σB)T

0(r+1)mn



∈Rz, Wbs=









In⊗MA
x1
−(MB

x1
)T⊗ Im

In⊗MA
x2
−(MB

x2
)T⊗ Im

. . .

In⊗MA
xr
−(MB

xr
)T⊗ Im









∈Rrmn×mn.

Then, considering the slack variable K(t) ∈ Rz, the inequation (26) can be converted into
the equation

Lbsvec(U(t))− bbs + K⊙2(t) = 0z, (27)

where K⊙2(t) is always a non-negative time-varying term.
Thereafter, the ZNN approach considers the following EME, which is based on (27),

for simultaneously satisfying all the inequations in (25):

Ebs(t) = Lbs vec(U(t))− bbs + K⊙2(t), (28)

where U(t) and K(t) are the unknown matrices to be found. The first time derivative of
(28) is

Ėbs(t) = Lbs vec(U̇(t)) + 2(Iz ⊙ K(t))K̇(t). (29)

Then, combining Equations (28) and (29) with the ZNN design (7), we obtain

Lbsvec(U̇(t)) + 2(Iz ⊙ K(t))K̇(t) = −λEbs(t). (30)

As a result, setting

Hbs=
[

Lbs 2(Iz⊙K(t))
]

∈Rz×(mn+z), ẋ(t)=

[

vec(U̇(t))
K̇(t)

]

∈Rmn+z, x(t)=

[

vec(U(t))
K(t)

]

∈Rmn+z,
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the next model is obtained:
Hbs ẋ = −λEbs(t). (31)

Since the ZNN dynamics in solving (31) requires invertibility of the mass matrix Hbs, it is
practical to use the best approximate solution to (31), which leads to

ẋ = H†
bs (−λEbs(t)). (32)

An appropriate ode MATLAB solver can be used to handle the ZNN model of (32), addi-
tionally referred to as the ZNN-bs flow. The ZNN-bs model’s convergence and stability
investigation is shown in Theorem 4.

Theorem 4. Let A =

(

m, σ
A,

{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

be WFA

over R, where MA
xi
∈ Rm×m, σ

A ∈ R1×m, τ
A ∈ Rm×1 and MB

xi
∈ Rn×n, σ

B ∈ R1×n, τ
B ∈ Rn×1

with i = 1, . . . , r. The dynamics (30) in line with the ZNN method of (7) lead to the TSOL, shown

by xS (t) =
[

vec(US (t))
T KT

S (t)
]T

, which is stable according to Lyapunov.

Proof. The proof is omitted since it is similar to the proof of Theorem 2.

Theorem 5. Let A =

(

m, σ
A,

{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

be WFA

over R, where MA
xi
∈ Rm×m, σ

A ∈ R1×m, τ
A ∈ Rm×1 and MB

xi
∈ Rn×n, σ

B ∈ R1×n, τ
B ∈ Rn×1

with i = 1, . . . , r. Beginning from any initial point x(0), the ZNN-bs design (32) converges
exponentially to x∗(t), which refers to the TSOL of (4).

Proof. The proof is omitted since it is similar to the proof of Theorem 3.

3.3. The ZNN-fb Model

In line with (5), the following group of inequations must be satisfied:















































UT(t)τA − τ
B ⩽ 0n,

U(t)τB − τ
A ⩽ 0m,

σ
A − σ

BUT(t) ⩽ 0T
m,

σ
B − σ

AU(t) ⩽ 0T
n ,

UT(t)MA
xi
− MB

xi
UT(t) ⩽ 0n,m, i = 1, . . . , r,

U(t)MB
xi
− MA

xi
U(t) ⩽ 0m,n, i = 1, . . . , r,

U(t) ⩾ 0m,n,

(33)

where U(t) ∈ Rm×n implies the unknown matrix to be generated. Utilizing vectorization
in combination with the Kronecker product, the system of (33) is reformulated as























































(

(τA)T ⊗ In

)

vec(UT(t))− τ
B ⩽ 0n,

(

(τB)T ⊗ Im

)

vec(U(t))− τ
A ⩽ 0m,

−
(

Im ⊗ σ
B
)

vec(UT(t)) + (σA)T ⩽ 0m,

−
(

In ⊗ σ
A
)

vec(U(t)) + (σB)T ⩽ 0n,
(

(MA
xi
)T ⊗ In − Im ⊗ MB

xi

)

vec(UT(t)) ⩽ 0mn, i = 1, . . . , r,
(

(MB
xi
)T ⊗ Im − In ⊗ MA

xi

)

vec(U(t)) ⩽ 0mn, i = 1, . . . , r,

−vec(U(t)) ⩽ 0mn.

(34)
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Using the permutation matrix P for vec(UT(t)), (34) is rewritten as























































(

(τA)T ⊗ In

)

P vec(U(t))− τ
B ⩽ 0n,

(

(τB)T ⊗ Im

)

vec(U(t))− τ
A ⩽ 0m,

−
(

Im ⊗ σ
B
)

P vec(U(t)) + (σA)T ⩽ 0m,

−
(

In ⊗ σ
A
)

vec(U(t)) + (σB)T ⩽ 0n,
(

(MA
xi
)T ⊗ In − Im ⊗ MB

xi

)

Pvec(U(t)) ⩽ 0mn, i = 1, . . . , r,
(

(MB
xi
)T ⊗ Im − In ⊗ MA

xi

)

vec(U(t)) ⩽ 0mn, i = 1, . . . , r,

−vec(U(t)) ⩽ 0mn,

and its corresponding matrix form is

L fb vec(U(t))− b fb ⩽ 0y, (35)

where y = (2r + 1)mn + 2m + 2n and

L fb=

















((τA)T⊗In)P

(τB)T⊗ Im

−(Im⊗σ
B)P

−In⊗σ
A

W fb

−Imn

















∈Ry×mn, b fb=













τ
B

τ
A

−(σA)T

−(σB)T

0(2r+1)mn













∈Ry, W fb=























((MA
x1
)T⊗In−Im⊗MB

x1
)P

(MB
x1
)T⊗Im−In⊗MA

x1

((MA
x2
)T⊗In−Im⊗MB

x2
)P

(MB
x2
)T⊗Im−In⊗MA

x2

. . .

((MA
xr
)T⊗In−Im⊗MB

xr
)P

(MB
xr
)T⊗Im−In⊗MA

xr























∈R2rmn×mn.

Then, considering the slack variables vector K(t) ∈ Ry, the inequation (35) is converted
into the equation

L fb vec(U(t))− b fb + K⊙2(t) = 0y.

Thereafter, the ZNN approach considers the following EME, which is based on (35),
for simultaneously satisfying all the inequations in (33):

E fb(t) = L fb vec(U(t))− b fb + K⊙2(t), (36)

where U(t) and K(t) are the unknown matrices to be found. The first time derivative of
(36) is equal to

Ė fb(t) = L fb vec(U̇(t)) + 2(Iy ⊙ K(t))K̇(t). (37)

Then, combining Equations (36) and (37) with the ZNN design (7), we obtain the following:

L fb vec(U̇(t)) + 2(Iy ⊙ K(t))K̇(t) = −λE fb(t). (38)

As a result, setting

H fb=
[

L fb 2(Iy⊙K(t))
]

∈Ry×(mn+y), ẋ(t)=

[

vec(U̇(t))
K̇(t)

]

∈Rmn+y, x(t)=

[

vec(U(t))
K(t)

]

∈Rmn+y,

(38) is transformed into the model

H fb ẋ = −λE fb(t)

whose pseudoinverse solution is equal to

ẋ = H†
fb(−λE fb(t)). (39)
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An appropriate ode MATLAB solver can be used to handle the ZNN model (39), addi-
tionally referred to as the ZNN-fb model. The ZNN-fb model’s convergence and stability
investigation is shown in the next theorem.

Theorem 6. Let A =

(

m, σ
A,

{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

be the WFA

over R, where MA
xi
∈ Rm×m, σ

A ∈ R1×m, τ
A ∈ Rm×1 and MB

xi
∈ Rn×n, σ

B ∈ R1×n, τ
B ∈ Rn×1

with i = 1, . . . , r. The dynamics of (38) in line with the ZNN method of (7) lead to the TSOL,

shown by xS (t) =
[

vec(US (t))
T KT

S (t)
]T

, which is stable according to Lyapunov.

Proof. The proof is omitted since it is similar to the proof of Theorem 2.

Theorem 7. Let A =

(

m, σ
A,

{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

be the WFA

over R, where MA
xi
∈ Rm×m, σ

A ∈ R1×m, τ
A ∈ Rm×1 and MB

xi
∈ Rn×n, σ

B ∈ R1×n, τ
B ∈ Rn×1

with i = 1, . . . , r. Beginning from any initial point x(0), the ZNN-bs model of (39) converges
exponentially to x∗(t), which refers to the TSOL of (5).

Proof. The proof is similar to the proof of Theorem 3.

3.4. The ZNN-bb Model

In line with (6), the following group of inequations must be satisfied:















































τ
A − U(t)τB ⩽ 0m,

τ
B − UT(t)τA ⩽ 0n,

σ
AU(t)− σ

B ⩽ 0T
n ,

σ
BUT(t)− σ

A ⩽ 0T
m,

MA
xi

U(t)− U(t)MB
xi
⩽ 0m,n, i = 1, . . . , r,

MB
xi

UT(t)− UT(t)MA
xi
⩽ 0n,m, i = 1, . . . , r,

U(t) ⩾ 0m,n,

(40)

where U(t) ∈ Rm×n stands for the unknown matrix. The system of (40) is reformulated
as follows:























































−
(

(τB)T ⊗ Im

)

vec(U(t)) + τ
A ⩽ 0m,

−
(

(τA)T ⊗ In

)

vec(UT(t)) + τ
B ⩽ 0n,

(

In ⊗ σ
A
)

vec(U(t))− (σB)T ⩽ 0n,
(

Im ⊗ σ
B
)

vec(UT(t))− (σA)T ⩽ 0m,
(

In ⊗ MA
xi
− (MB

xi
)T ⊗ Im

)

vec(U(t)) ⩽ 0mn, i = 1, . . . , r,
(

Im ⊗ MB
xi
− (MA

xi
)T ⊗ In

)

vec(UT(t)) ⩽ 0mn, i = 1, . . . , r,

−vec(U(t)) ⩽ 0mn.

(41)

Using the permutation matrix P for generating vec(UT(t)), (41) is rewritten as























































−
(

(τB)T ⊗ Im

)

vec(U(t)) + τ
A ⩽ 0m,

−
(

(τA)T ⊗ In

)

P vec(U(t)) + τ
B ⩽ 0n,

(

In ⊗ σ
A
)

vec(U(t))− (σB)T ⩽ 0n,
(

Im ⊗ σ
B
)

P vec(U(t))− (σA)T ⩽ 0m,
(

In ⊗ MA
xi
− (MB

xi
)T ⊗ Im

)

vec(U(t)) ⩽ 0mn, i = 1, . . . , r,
(

Im ⊗ MB
xi
− (MA

xi
)T ⊗ In

)

Pvec(U(t)) ⩽ 0mn, i = 1, . . . , r,

−vec(U(t)) ⩽ 0mn,
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and its corresponding matrix form is the following:

Lbbvec(U(t))− bbb ⩽ 0y, (42)

where

Lbb =

















−(τB)T ⊗ Im

−((τA)T ⊗ In)P

In ⊗ σ
A

(Im ⊗ σ
B)P

Wbb

−Imn

















∈ R
y×mn, bbb =













−τ
A

−τ
B

(σB)T

(σA)T

0(2r+1)mn













∈ R
y,

Wbb =























In ⊗ MA
x1
− (MB

x1
)T ⊗ Im

(

Im ⊗ MB
x1
− (MA

x1
)T ⊗ In

)

P

In ⊗ MA
x2
− (MB

x2
)T ⊗ Im

(

Im ⊗ MB
x2
− (MA

x2
)T ⊗ In

)

P

. . .

In ⊗ MA
xr
− (MB

xr
)T ⊗ Im

(

Im ⊗ MB
xr
− (MA

xr
)T ⊗ In

)

P























∈ R
2rmn×mn.

Then, considering the slack variable K(t) ∈ Ry, the inequation (42) can be converted into
the equation

Lbbvec(U(t))− bbb + K⊙2(t) = 0y,

in which K⊙2(t) is always a non-negative time-varying term.
Thereafter, the ZNN approach considers the following EME, which is based on (42),

for simultaneously satisfying all the equations in (40):

Ebb(t) = Lbbvec(U(t))− bbb + K⊙2(t), (43)

where U(t) and K(t) are the unknown matrices to be found. The first time derivative of
(43) is given as

Ėbb(t) = Lbbvec(U̇(t)) + 2(Iy ⊙ K(t))K̇(t). (44)

Then, combining Equations (43) and (44) with the ZNN design of (7), we can obtain

Lbb vec(U̇(t)) + 2(Iy ⊙ K(t))K̇(t) = −λEbb(t). (45)

As a result, setting

Hbb=
[

Lbb 2(Iy⊙K(t))
]

∈Ry×(mn+y), ẋ(t)=

[

vec(U̇(t))
K̇(t)

]

∈Rmn+y, x(t)=

[

vec(U(t))
K(t)

]

∈Rmn+y,

the next model is obtained:
Hbb ẋ = −λEbb(t),

or an equivalent:
ẋ = H†

bb (−λEbb(t)). (46)

An appropriate ode MATLAB solver can be used to handle the ZNN model of (46), addi-
tionally referred to as the ZNN-bb model. The ZNN-bb model’s convergence and stability
investigation is shown in the next theorem.

Theorem 8. Let A =

(

m, σ
A,

{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

be the WFA

over R, where MA
xi
∈ Rm×m, σ

A ∈ R1×m, τ
A ∈ Rm×1 and MB

xi
∈ Rn×n, σ

B ∈ R1×n, τ
B ∈ Rn×1

with i = 1, . . . , r. The dynamics of (45) in line with the ZNN method of (7) lead to the TSOL,

shown by xS (t) =
[

vec(US (t))
T KT

S (t)
]T

, which is stable according to Lyapunov.
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Proof. The proof is omitted since it is similar to the proof of Theorem 2.

Theorem 9. Let A =

(

m, σ
A,

{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

be the WFA

over R, where MA
xi
∈ Rm×m, σ

A ∈ R1×m, τ
A ∈ Rm×1 and MB

xi
∈ Rn×n, σ

B ∈ R1×n, τ
B ∈ Rn×1

with i = 1, . . . , r. Beginning from any initial point x(0), the ZNN-bb model of (46) converges
exponentially to x∗(t), which refers to the TSOL of (6).

Proof. The proof is similar to the proof of Theorem 3.

4. ZNN Experiments

The performances of the ZNN-fs model of (19), the ZNN-bs model of (32), the ZNN-fb
model of (39), and the ZNN-bb model of (46) are examined in each of the five numerical
experiments presented in this section. Keep in mind that during the computation in all
experiments, the MATLAB ode45 solver was applied with time span of [0, 10] under a
relative and absolute tolerance of 10−12 and 10−8, respectively. Additionally, we contrast
the output of the ZNN models with the results of the MATLAB function linprog (with the
default settings). Following the model proposed in [7], the zero initial point is used.

Example 1. Let us choose m = 2, n = 3, r = 2, and X = {x1, x2}, and consider WFA

over R defined by A =
(

m, σ
A, {MA

xi
}xi∈X , τ

A
)

and B =
(

n, σ
B, {MB

xi
}xi∈X , τ

B
)

. Clearly,

MA
xi
∈ Rm×m, σ

A ∈ R1×m, τ
A ∈ Rm×1 and MB

xi
∈ Rn×n, σ

B ∈ R1×n, τ
B ∈ Rn×1. Consider

A =
(

m, σ
A, {MA

xi
, = 1, 2}, τ

A
)

defined by

σ
A =

[

−7 −8
]

, τ
A =

[

−13 −13
]T

,

MA
x1

=

[

−6 9
−13 −14

]

, MA
x2

=

[

13 −1
−15 −9

]

and B =
(

n, σ
B,
{

MB
xi

, i = 1, 2
}

, τ
B
)

defined by

σ
B =

[

5 −14 9
]

, τ
B =

[

−3 1 1
]T

,

MB
x1

=





−4 −2 2
−13 17 9
−15 −14 17



, MB
x2

=





−2 12 7
−1 16 −3
−2 −5 7



.

Furthermore, the design parameter of ZNN is set to λ = 10, and the following initial conditions
(ICs) are used:

• IC1: x(0) = 123,
• IC2: x(0) = −123,
• IC3: x(0) = rand(23, 1).

The results of the ZNN-fs model are presented in Figure 1.
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Figure 1. Cont.
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Figure 1. Errors and trajectories in Examples 1 and 2. (a) Example 1: EME errors. (b) Example 1:

Trajectories of U(t). (c) Example 1: Trajectories of K(t). (d) Example 1: Number of unsatisfied

constraints. (e) Example 2: EME errors. (f) Example 2: Trajectories of U(t). (g) Example 2: Trajectories

of K(t). (h) Example 2: Number of unsatisfied constraints.

Example 2. Let m = 4, n = 2, r = 2, and X = {x1, x2}, and consider WFA A =
(

m, σ
A,

{

MA
xi

}

xi∈X
, τ

A

)

and B =

(

n, σ
B,
{

MB
xi

}

xi∈X
, τ

B

)

. Clearly, MA
xi

∈ Rm×m, σ
A ∈

R1×m, τ
A ∈ Rm×1 and MB

xi
∈ Rn×n, σ

B ∈ R1×n, τ
B ∈ Rn×1. Consider A =

(

m, σ
A, {MA

xi
, = 1, 2}, τ

A
)

defined by

σ
A =

[

−1 1 −2 1
]

, τ
A =

[

1 1 1 1
]T

,

MA
x1

=









2 −1 3 −1
1 −2 1 −2
3 −1 2 −1
3 −1 2 −1









, MA
x2

=









1 4 −2 4
2 −1 2 −1
−2 4 1 4
−2 4 1 4









and B =
(

n, σ
B,
{

MB
xi

, i = 1, 2
}

, τ
B
)

defined by

σ
B =

[

1 2
]

, τ
B =

[

1 1
]T

,

MB
x1

=

[

6 4
−4 4

]

, MB
x2

=

[

4 6
6 4

]

.

Also, the design parameters of ZNN are λ = 10, λ = 100 and λ = 100, whereas the IC is set to
x(0) = 130. The results of the ZNN-bs model are presented in Figure 1.

Example 3. Let m = n = k = 10, r = 2, and X = {x1, x2}, and consider WFA A =
(

m, σ
A, {MA

xi
}xi∈X , τ

A
)

and B =
(

n, σ
B, {MB

xi
}xi∈X , τ

B
)

over R. Clearly, MA
xi

∈ Rm×m,

σ
A ∈ R1×m, τ

A ∈ Rm×1 and MB
xi

∈ Rn×n, σ
B ∈ R1×n, τ

B ∈ Rn×1. Consider A =
(

m, σ
A, {MA

xi
, = 1, 2}, τ

A
)

defined by

σ
A = 1T

k , τ
A = 1k, MA

x1
= Ik, MA

x2
= Ik
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and B =
(

n, σ
B, {MB

xi
, i = 1, 2}, τ

B
)

defined by

σ
B = 5 · 1T

k , τ
B = 5 · 1k, MB

x1
= 5 · Ik, MB

x2
= 5 · Ik.

Furthermore, the design parameter of ZNN is set to λ = 10, 100, 1000, and the following ICs are
used:

• IC1: x(0) = 1420,
• IC2: x(0) = −1420,
• IC3: x(0) = rand(420, 1).

The results of the ZNN-fs model are presented in Figure 2.
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(a) Various ICs: EME errors. (b) Various ICs: Trajectories of U(t). (c) Various ICs: Trajectories of K(t).
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(g) Various λ: Trajectories of K(t).
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(h) Various λ: Unsatisfied constraints.
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Figure 2. Errors and trajectories in Example 3.

Example 4. Let m = n = k = 10, r = 2, and X = {x1, x2}, and consider WFA A =
(

m, σ
A, {MA

xi
}xi∈X , τ

A
)

and B =
(

n, σ
B, {MB

xi
}xi∈X , τ

B
)

over R. Clearly, MA
xi

∈ Rm×m,

σ
A ∈ R1×m, τ

A ∈ Rm×1 and MB
xi

∈ Rn×n, σ
B ∈ R1×n, τ

B ∈ Rn×1. Consider A =
(

m, σ
A, {MA

xi
, = 1, 2}, τ

A
)

defined by

σ
A = 1T

k , τ
A = 1k, MA

x1
= Ik, MA

x2
= Ik
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and B =
(

n, σ
B, {MB

xi
, i = 1, 2}, τ

B
)

defined by

σ
B = 2 · 1T

k , τ
B = 2 · 1k, MB

x1
= 2 · Ik, MB

x2
= 2 · Ik.

Furthermore, the design parameter of ZNN is set to λ = 10, 100, 1000, and the following ICs are
used:

• IC1: x(0) = 1420,
• IC2: x(0) = −1420,
• IC3: x(0) = rand(420, 1).

The results of the ZNN-bs model are presented in Figure 3.
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(a) Various ICs: EME errors. (b) Various ICs: Trajectories of U(t). (c) Various ICs: Trajectories of K(t).
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(g) Various λ: Trajectories of K(t).
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Figure 3. Errors and trajectories in Example 4.

Example 5. Let m = k + 1, n = k with k = 10, r = 2, and X = {x1, x2}, and consider

WFA A =
(

m, σ
A, {MA

xi
}xi∈X , τ

A
)

and B =
(

n, σ
B, {MB

xi
}xi∈X , τ

B
)

over R. Clearly, MA
xi
∈
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Rm×m, σ
A ∈ R1×m, τ

A ∈ Rm×1, and MB
xi

∈ Rn×n, σ
B ∈ R1×n, τ

B ∈ Rn×1. Consider

A =
(

m, σ
A, {MA

xi
, = 1, 2}, τ

A
)

defined by

σ
A = −1T

k+1, τ
A =

[

−1k

1

]

, MA
x1

=

[

−1k,k+1

1T
k+1

]

, MA
x2

= 2 ·

[

−1k,k+1

1T
k+1

]

and B =
(

n, σ
B, {MB

xi
, i = 1, 2}, τ

B
)

defined by

σ
B = −1T

k , τ
B = −1k, MB

x1
= −1k,k, MB

x2
= −2 · 1k,k.

Furthermore, the design parameter of ZNN is set to λ = 10, 100, 1000, and the following ICs are
used:

• IC1: x(0) = 1702,
• IC2: x(0) = −1702,
• IC3: x(0) = rand(702, 1).

The results of the ZNN-fb model are presented in Figure 4.
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Figure 4. Errors and trajectories in Example 5.

Example 6. Let m = k + 1, n = k with k = 10, r = 2, and X = {x1, x2}, and consider

WFA A =
(

m, σ
A, {MA

xi
}xi∈X , τ

A
)

and B =
(

n, σ
B, {MB

xi
}xi∈X , τ

B
)

over R. Clearly, MA
xi
∈
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Rm×m, σ
A ∈ R1×m, τ

A ∈ Rm×1, and MB
xi

∈ Rn×n, σ
B ∈ R1×n, τ

B ∈ Rn×1. Consider

A =
(

m, σ
A, {MA

xi
, = 1, 2}, τ

A
)

defined by

σ
A =

[

2 · 1T
k 1

]

, τ
A =

[

−2 · 1k

−1

]

, MA
x1

=
[

−1k+1,k 1k+1

]

, MA
x2

= 2 ·
[

−1k+1,k 1k+1

]

and B =
(

n, σ
B, {MB

xi
, i = 1, 2}, τ

B
)

defined by

σ
B = 2 · 1T

k , τ
B = −2 · 1k, MB

x1
= −1k,k, MB

x2
= −2 · 1k,k.

Furthermore, the design parameter of ZNN is set to λ = 10, 100, 1000, and the following ICs are
used:

• IC1: x(0) = 1702,
• IC2: x(0) = −1702,
• IC3: x(0) = rand(702, 1).

The results of the ZNN-bb model are presented in Figure 5.
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Figure 5. Errors and trajectories in Example 6.
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Results Discussion

This part discusses the findings from the four numerical examples that look at how
effectively the ZNN models perform.

More precisely, in Example 1, we obtain the next outcomes for the ZNN-fs model by
IC1, IC2, and IC3 for λ = 10. Figure 1e shows the ZNN-fs model’s EMEs. All instances start
from a huge error price at t = 0, and all EMEs conclude in the interval [10−8, 10−7] with a
negligible error price at t = 2. Put another way, the ZNN-fs model validates Theorem 3 by
converging to a value close to zero for three distinct ICs. The trajectories of U(t) and K(t),
i.e., the model’s solutions, are shown in Figures 1f,g, respectively. These results indicate that
U(t) and K(t) do not have similar trajectories via IC1, IC2, and IC3, but their convergence
speeds are similar. Therefore, the ZNN-fs model appears to give different solutions for
a range of ICs, and its solutions’ convergence pattern is proven to be matched up with
the convergence pattern of the linked EMEs. Moreover, given that the ZNN-fs model
must satisfy z = 23 in number inequality constraints, Figure 1h illustrates the number
of inequality constraints that remain unsatisfied during the ZNN learning process. This
number equals 0 when all of the inequality constraints are satisfied. In this example, this
number becomes 0 at t = 0.5 for IC1, at t = 0.8 for IC2, and at t = 1.3 for IC3. Therefore,
for a variety of ICs, the ZNN-fs model seems to have varying convergence speeds when
it comes to satisfying the inequality constraints. Comparing the ZNN-fs model to the
linprog, we see in Figure 1f that the linprog yields different U(t) trajectories than ZNN.
Furthermore, we see in Figure 1h that 2 of the 23 inequality constraints are not satisfied
by the linprog solution. As a result, the ZNN-fs model outperforms the linprog in this
particular example.

In Example 2, under λ = 10, 100, 1000, the next outcomes for the ZNN-bs model are
obtained. Figure 1a shows the ZNN-bs model’s EMEs. All instances in this figure start
with a large error price at t = 0 and conclude at [10−10, 10−7] at t = 0.02 for λ = 1000,
at t = 0.2 for λ = 100, and at t = 2 for λ = 10, with a negligible error price. Put another
way, the ZNN approach’s convergence features are confirmed by the ZNN-bs model’s
EME, which is dependent on λ, and the ZNN-bs model validates Theorem 5 by converging
to a value close to zero. The trajectories of U(t) and K(t), i.e., the model’s solutions, are
shown in Figure 1b,d, respectively. These results indicate that the convergence speed of
the trajectories of U(t) and K(t) is much faster via λ = 1000 than via λ = 100, while the
convergence speed of the trajectories of U(t) and K(t) is much faster via λ = 100 than
via λ = 10. Also, it is observable that U(t) and K(t) have similar trajectories with each
other via λ = 10, 100, 1000, respectively. So, the ZNN-bs model appears to give the same
U(t) and K(t) solutions for a range of λ values, and its solutions’ convergence pattern is
proven to be matched up with the convergence pattern of the linked EMEs. Moreover,
given that the ZNN-bs model must satisfy z = 30 in the number inequality constraints,
Figure 1d illustrates the number of inequality constraints that remain unsatisfied during
the ZNN learning process. This number becomes 0 at t = 0.3 for λ = 10, at t = 0.05 for
λ = 100, and at t = 0.005 for λ = 1000. Therefore, for higher values of λ, the ZNN-bs
model seems to have faster convergence speeds when it comes to satisfying the inequality
constraints. Comparing the ZNN-bs model to the linprog, we see in Figure 1b that the
linprog yields different U(t) trajectories than ZNN. Furthermore, we see in Figure 1d that
3 of the 30 inequality constraints are not satisfied by the linprog solution. As a result,
the ZNN-bs model outperforms the linprog in this example.

In Examples 3–6, we obtain the next outcomes for the ZNN-fs, ZNN-bs, ZNN-fb,
and ZNN-bb models by IC1, IC2, and IC3 for λ = 10. Figures 2a, 3a, 4a and 5a show the
ZNN model’s EMEs. All instances start from a huge error price at t = 0, and all EMEs
conclude in the interval [10−15, 10−13] with a negligible error price at t = 3.6. Put another
way, the ZNN-fs, ZNN-bs, ZNN-fb, and ZNN-bb models validate Theorems 3, 5, 7 and 9,
respectively, by converging to a value close to zero for two distinct ICs. The trajectories
of U(t), generated by the ZNN-fs, ZNN-bs, ZNN-fb, and ZNN-bb models, are shown in
Figures 2b, 3b, 4b and 5b, and the trajectories of K(t) are shown in Figures 2c, 3c, 4c and 5c,
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respectively. For each case, these results indicate that U(t) and K(t) do not have similar
trajectories via IC1, IC2, and IC3, but their convergence speeds are similar. Therefore,
all ZNN models appear to give different solutions for a range of ICs, and their solutions’
convergence pattern is proven to be matched up with the convergence pattern of the linked
EMEs. Moreover, given that the ZNN-fs and ZNN-bs models must satisfy z = 320 in the
number inequality constraints and the ZNN-fb and ZNN-bb models must satisfy y = 592
in the number inequality constraints, Figures 2d, 3d, 4d and 5d illustrate the number
of inequality constraints that remain unsatisfied during the ZNN learning process. This
number becomes 0 at around t = 2 for all ICs. Therefore, for a variety of ICs, the ZNN
models seem to have varying convergence rates when it comes to satisfying the inequality
constraints.

Additionally, the next outcomes for the ZNN-fs, ZNN-bs, ZNN-fb, and ZNN-bb
models are obtained in Examples 3–6 under λ = 10, 100, 1000. Figures 2e, 3e, 4e and 5e
show the ZNN models’ EMEs. All instances in these figures start with a large error price at
t = 0 and conclude at [10−16, 10−14] at t = 0.04 for λ = 1000, at t = 0.4 for λ = 100, and at
t = 3.8 for λ = 10, with a negligible error price. Put another way, the ZNN approach’s
convergence features are confirmed by the ZNN models’ EME, which is dependent on λ,
and the ZNN-fs, ZNN-bs, ZNN-fb, and ZNN-bb models validate Theorems 3, 5, 7 and 9,
respectively, by convergence to a value close to zero. The trajectories of U(t) generated by
the ZNN-fs, ZNN-bs, ZNN-fb, and ZNN-bb models are shown in Figures 2f, 3f, 4f and 5f,
and the trajectories of K(t) are shown in Figures 2g, 3g, 4g and 5g, respectively. These
results indicate that the convergence speed of the trajectories of U(t) and K(t) is much faster
via λ = 1000 than via λ = 100, while the convergence speed of the trajectories of U(t) and
K(t) is much faster via λ = 100 than via λ = 10. Also, it is observable that U(t) and K(t)
have similar trajectories via λ = 10, 100, and 1000, respectively. So, for each case, the ZNN
model appears to give the same U(t) and K(t) solutions for a range of λ values, and its
solutions’ convergence pattern is proven to be matched up with the convergence pattern
of the linked EMEs. Moreover, given that the ZNN-fs and ZNN-bs models must satisfy
z = 320 in the number of inequality constraints and the ZNN-fb and ZNN-bb models must
satisfy y = 592 in the number of inequality constraints, Figures 2h, 3h, 4h and 5h illustrate
the number of inequality constraints that remain unsatisfied during the ZNN learning
process. This number becomes 0 at t = 1.9 for λ = 10, at t = 0.3 for λ = 100, and at
t = 0.03 for λ = 1000. Therefore, for higher values of λ, the ZNN models seem to have
faster convergence speeds when it comes to satisfying the inequality constraints.

Comparing the ZNN models in Examples 3–6 to the linprog, we see in
Figures 2b,f, 3b,f, 4b,f and 5b,f that the linprog yields different U(t) trajectories than ZNN.
It is important to note that the zero solution is produced by the linprog in Example 6 and
that 10 of the 320 inequality constraints are not satisfied by the linprog solution in Example
3. Thus, the ZNN model performs similarly to the linprog in Examples 4–6, while the
ZNN model outperforms the linprog in Example 3. Furthermore, Figures 2i, 3i, 4i and 5i
show the time consumption of the ZNN-fs, ZNN-bs, ZNN-fb, and ZNN-bb models in
Examples 3–6, respectively, using the MATLAB R2022a environment on an Intel® CoreTM

i5-6600K CPU 3.50 GHz, 16 GB RAM, running on Windows 10 64 bit Operating System.
In these figures, as the dimensions of the matrices (i.e., the value of k) rise, we find that
the ZNN models’ time consumption increases considerably more via λ = 1000 than via
λ = 100, and that the ZNN models’ time consumption increases considerably more via
λ = 100 than via λ = 10. Therefore, for higher values of λ, the ZNN models seem to have a
higher time consumption.

When everything is considered, the ZNN-fs, ZNN-bs, ZNN-fb, and ZNN-bb models
perform admirably in finding the solution of Equations (3)–(6), respectively. Upon com-
paring the ZNN models to the linprog, it is discovered that each ZNN model exhibits
comparable or superior performance to the linprog. Additionally, all ZNN model perfor-
mances are affected by the value of λ, and their solutions are affected by the value of the
ICs. Keep in mind that the values of λ and the ICs in the experiments of this section were
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chosen at random. As a corollary, the approximation to the TSOL, x∗(t), in the ZNN-fs,
ZNN-bs, ZNN-fb, and ZNN-bb models, is achieved faster via λ = 1000 than via λ = 100
and λ = 10, while the time consumption is higher via λ = 1000 than via λ = 100 and
λ = 10.

5. Concluding Remarks

Practically, this research is focused on solving the equivalence problem (determining
whether two automata determine the same word function) or solving the containment
problem (determining whether the word function of one WFA is bounded from above by
the word function of another). Our intention was to unify two important topics, namely, the
zeroing neural network (ZNN) and the existence of forward and backward simulations and
bisimulations for weighted finite automata (WFA) over the field of real numbers R. Two
types of quantitative simulations and two types of bisimulations were defined as solutions
to particular systems of matrix and vector inequations over R. This research was aimed at
the development and analysis of two novel ZNN models, termed as ZNN-bs and ZNN-fs,
for addressing the systems of matrix and vector inequations involved in simulations as well
as at bisimulations between WFA and two novel ZNN models, termed ZNN-fb and ZNN-
bb, for addressing the systems of matrix and vector inequalities involved in bisimulations
between WFA. The problem considered in this paper requires solving a system of two
vector inequalities and a couple of matrix inequalities. Using positive slack matrices, the
required matrix and vector inequations were transformed into corresponding equations
which are solvable by the proposed ZNN dynamical systems. A detailed convergence
analysis was considered. Numerical examples were performed with different initial state
matrices. A comparison with a known LP approach proposed in [7] was presented, and
the better performance of the ZNN design was confirmed. The models solved in current
research utilized the development of ZNN dynamics based on several inequations and
Zhang error functions. The derived models can be viewed as extensions from equations to
inequations of ZNN algorithms established upon a few error functions. Such models have
been investigated in several papers, such as [31–34].

Seen more generally, the research described in this paper shows that the ZNN design
is usable in solving systems of matrix and vector inequations in linear algebra. Further
research can be aimed at solving the minimization problems (determining an automaton
with the minimal number of states equivalent to a given automaton).

Simulations and bisimulations have already been studied through solving systems of
matrix inequations in the context of fuzzy finite automata [2,3], nondeterministic automata
[4], WFA over an additively idempotent semiring [5], and max-plus automata [6]. The
methodology used there, based on the concept of residuation, is fundamentally different
from the methodology applied in this article to WFA over the field of real numbers. Perhaps
some general ideas of this article could be applied to solving systems of matrix inequalities
in the context of fuzzy finite automata, for example, the use of neuro-fuzzy systems (fuzzy
neural networks), which could be the topic of our future research. On the other hand,
the proposed methodology could be more directly applied to some special WFA over a
field of real numbers, such as WFA over a semiring of nonnegative real numbers and
probabilistic automata. This will also be one of the topics of our future research.
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