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Multilevel image thresholding presents a computational challenge as the number of thresholds 
increases, requiring efficient optimization techniques. The artificial bee colony (ABC) algorithm is a 
widely used metaheuristic for addressing this problem. Despite the good performance of the ABC 
algorithm, it struggles with an inadequate balance between discovering new solutions and refining 
existing ones. This paper presents the globally informed artificial bee colony (giABC), an enhanced 
ABC variant, proposed for multilevel color image thresholding. To overcome the limitations of the 
ABC algorithm, giABC introduces two novel mutation operators. In the employed phase, solutions 
are dynamically guided toward the mean of the current better solutions, ensuring a sustained balance 
between global exploration and local enhancement. In the onlooker phase, solutions are further 
refined by combining attraction to the global best solution with adaptation to promising solutions, 
significantly enhancing both convergence speed and solution quality. The proposed giABC, along with 
the ABC, its two variants and the chaotically-enhanced Rao algorithm, were tested on twelve color 
images from the Berkeley dataset using Otsu’s objective function. Experimental results show that 
giABC outperforms the other metaheuristics in accuracy, robustness, peak signal-to-noise ratio and 
structural similarity index, with Wilcoxon signed-rank tests confirming its statistical significance.
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Image segmentation is a core task in image processing that involves dividing a digital image into multiple 
segments based on specific characteristics1. These regions are typically homogeneous in terms of specific 
properties like color or texture. The purpose of segmentation is to change the image representation to make it 
more meaningful to analyze. Image segmentation is widely used across various industries, including medical 
imaging2, surveillance systems, robotics and autonomous vehicles3.

Thresholding is among the most frequently used techniques for image segmentation because of its simplicity 
in implementation and effectiveness4. The core idea of thresholding is to classify the pixels of a colored or 
grayscale image into different regions based on their intensity values by setting specific threshold values. The 
main challenge is determining the correct thresholds. When an image is split into two regions, this process is 
known as bi-level thresholding. Bi-level thresholding is extendable to multilevel thresholding when the goal is to 
divide an image into more than two regions.

Over the years, a wide range of thresholding techniques has been introduced5. Most of these techniques rely 
on optimizing a specific criterion function. Maximum between-class variance and maximum entropy are two of 
the most extensively employed criteria for identifying optimal threshold values6. Otsu’s between-class variance 
criterion selects the appropriate thresholds by maximizing the variance across regions. Entropy-based criteria, 
such as Kapur’s entropy or Renyi’s entropy, aim to maximize the sum of entropies for each region to determine 
the suitable thresholds7.

Multilevel image thresholding involves finding k optimal integer thresholds between 0 and 255 and represents 
a task that belongs to the class of NP-hard combinatorial optimization problems5. The computational time 
of current deterministic algorithms for multilevel thresholding grows exponentially with the increase in the 
number of thresholds. Consequently, these methods are not practical for solving the problem within a realistic 
time limit8.

Given the inefficiency of standard deterministic methods, researchers over the last few decades have 
increasingly adopted metaheuristic optimization algorithms for multilevel thresholding9–11. These algorithms 
do not ensure finding the optimal solution but effectively determine near-optimal threshold values. A major 
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drawback of these algorithms is their reliance on algorithm-specific parameters. An increase in the number of 
parameters intensifies the complexity of parameter tuning. Each metaheuristic has its own shortcomings12,13. 
Some have a strong ability to explore novel areas of the search space, while others are better at exploiting 
previously discovered promising points. Various notable metaheuristic algorithms include particle swarm 
optimization (PSO), differential evolution (DE), Rao algorithms14, artificial bee colony (ABC)15, among others12. 
Additionally, numerous variants of these techniques have been developed to enhance their performance for 
specific types of problems16,17.

In18, the classic ABC and PSO metaheuristic algorithms were employed to optimize between-class variance and 
Kapur’s entropy, aiming to address the multilevel thresholding problem. The performance of the ABC algorithm 
was compared with the basic PSO algorithm in terms of SSIM, PSNR, fitness function and computational time. A 
hybrid method that integrates the sine cosine algorithm (SCA) and artificial bee colony to search for thresholds 
using Otsu’s function as the objective function is proposed in19. The effectiveness of the developed approach 
was evaluated against the SCA and ABC algorithms by measuring fitness values, computational time, SSIM and 
PSNR. An improved Bloch quantum artificial bee colony algorithm is developed to solve the problem of gray 
image multilevel threshold segmentation, as discussed in20. In that research, Kapur’s entropy was employed 
as the objective function. The experimental results of the threshold segmentation achieved by the developed 
method were compared with those of the classic GA, PSO and ABC algorithms.

Each of the previously discussed studies focused on segmenting gray images using multilevel thresholding. 
On the other hand, color images provide a greater amount of information compared to grayscale images. 
Metaheuristic optimization methods are additionally extensively used for multilevel segmentation of color 
images. A hybrid method that incorporates Krill Herd algorithm into the ABC for multilevel color image 
segmentation is proposed in21. In that research, a modified objective function which combines Kapur’s entropy 
with structural similarity index matrix is employed. The performance of the proposed method was assessed by 
comparing it to the ABC and PSO algorithms. This evaluation involved analysing boundary displacement error, 
peak signal-to-noise ratio and feature similarity index measurement. The implementation and comparison of 
the PSO, ABC, genetic algorithm, cuckoo search and modified whale optimization metaheuristics for multilevel 
segmentation of color images using Otsu’s and Kapur’s objective functions were presented in22. In8, color images 
of plant diseases were segmented using the ABC, teaching-learning-based optimization, cuckoo search, teaching-
learning-based artificial bee colony and its improved variant. The performance of the five metaheuristics 
algorithms was assessed and compared based on objective function values and three image quality metrics.

While the No Free Lunch Theorem indicates that no single algorithm is universally optimal23, the ABC 
algorithm’s adaptability, effective search strategies and minimal number of control parameters make it highly 
capable of tackling high-dimensional, nonlinear problems, such as multilevel thresholding24,25. Its straightforward 
design has inspired the development of numerous enhanced variants that retain its core simplicity while 
improving performance.

In this study, an enhanced ABC variant called globally informed ABC (giABC) is proposed to solve the 
multilevel color image thresholding problem. The proposed approach employed two novel search strategies in 
the employed and onlooker stages. Both search mechanisms use the mean value of the current better solutions to 
guide the search process. The search equation used in the onlooker phase additionally incorporates information 
from the global best solution to further enhance the exploitation capabilities of the standard ABC algorithm. 
Together, these enhancements enable giABC to achieve a robust balance between exploration and exploitation, 
yielding a significant improvement in the ABC algorithm. On the other hand, the proposed algorithm retains the 
structure and simplicity of the ABC, while not adding any additional control parameters compared to its original 
version adapted for solving integer programming problems.

The performance of the proposed approach is evaluated using twelve color images from Berkeley dataset. 
For comparison, the standard ABC algorithm, its two variants, the gbest-guided artificial bee colony (GABC)26 
and shuffle-based artificial bee colony (SB-ABC)27, and the chaotic enhanced Rao (CER) algorithm28 are 
also adjusted to solve the multilevel color image thresholding problem. The GABC is a well-established ABC 
variant26, while the SB-ABC, originally designed for integer programming problems27, effectively addresses 
discrete optimization challenges. The CER algorithm, which recently demonstrated superior performance in 
solving the multilevel thresholding problem28, is a suitable choice for comparison.

The key contributions and advantages of this study can be outlined as follows:

• This study introduces an improved ABC variant, giABC, for solving the multilevel color thresholding prob-
lem using Otsu’s function as the objective function.

• The performance of the giABC, standard ABC, its two variants and the CER algorithm is evaluated on twelve 
images from the Berkeley dataset.

• Experiments are conducted to segment benchmark images into 6, 8, 10, and 12 color threshold levels.
• The segmentation quality of the giABC, ABC, its two variants and the CER algorithm is assessed using met-

rics such as PSNR, SSIM, objective function value, computational time and statistical analysis.
• The diversity behavior of the ABC, GABC, SB-ABC and giABC in solving the multilevel color thresholding 

problem is analyzed.

The paper is organized as follows. The next section presents the formulation of the multilevel thresholding problem. 
Section "Overview of the algorithms used in the study" provides an overview of the metaheuristics employed 
for multilevel color image thresholding, including the proposed giABC algorithm. Section "Experimental study" 
presents and analyzes the experimental results. Section "Diversity behaviour analysis of ABC variants" provides 
a detailed analysis of the diversity behaviour of the ABC variants. The concluding section summarizes the key 
findings and insights of the study.
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Formulation of multilevel thresholding problem
The multilevel thresholding problem aims to find the optimal k thresholds that divide the original image into k 
+ 1 distinct regions, denoted as R0, R1, ..., Rk

8. Let L represent the number of gray levels in a grayscale image 
or the red, green, and blue channels of an RGB image. Suppose that the gray levels of an image I are in the range 
0, 1, ..., L − 1. Multilevel thresholding is characterized by:

 

R0 = {(x, y) ∈ I | 0 ≤ f(x, y) ≤ t1 − 1},

R1 = {(x, y) ∈ I | t1 ≤ f(x, y) ≤ t2 − 1},

R2 = {(x, y) ∈ I | t2 ≤ f(x, y) ≤ t3 − 1},

...
Rk = {(x, y) ∈ I | tk ≤ f(x, y) ≤ L − 1}.

 (1)

where k is the number of thresholds, f(x, y) represents the gray level of the pixel (x, y) and ti (i = 1, ..., k) 
denotes the ith threshold value. Eq. (1) is commonly applied to grayscale images. Since each red, green and blue 
channel can be treated as an individual image, Eq. (1) can also be applied to the red, green and blue channels of 
RGB color images.

In the multilevel thresholding problem, the goal is to identify the optimal vector that optimizes a given 
objective function. For this purpose, Otsu’s function is used as the objective function. The Otsu method is a 
technique that focuses on between-class variance and determines optimal thresholds by maximizing the variance 
among the segmented regions29.

The probability distribution of the intensity values can be determined by analyzing the basic principles of the 
image’s histogram30. Assume an image consists of N pixels, L denotes the number of gray levels in a grayscale 
image or the channel index within the RGB image, and hi denotes the number of pixels that correspond to i-th 
intensity level, where i ranges from 0 to L − 1.

Then the probability distribution of the intensity values can be obtained by30:

 
P c

i = hi
c

N
 (2)

where 
∑N

i=0 P c
i = 1. In the case of a grayscale image, c = 1, while for a color image, c = 1, 2, 3.

The aim of Otsu method is to maximize the following function30:
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 (4)

where µt
c =

∑L−1
i=0 iPi

c is the total mean intensity of the original image. For the multilevel color image 
thresholding using the Otsu’s method, parameter c = 1, 2, 3 represents the image channels (Red, Green, Blue - R, 
G, B).

Overview of the algorithms used in the study
This section presents the ABC, GABC, SB-ABC and CER algorithms, along with our proposed giABC method, 
that were used to tackle the multilevel color image thresholding problem. These metaheuristics aim to find the 
optimal threshold values ti (i = 1, ..., k) which solve the problem formulated by Eq. (3).

The RGB color model is a straightforward and effective way to represent color images, relying on three basic 
color channels: red, green and blue31. Therefore, we need to determine the optimal thresholds and objective 
function values for each color component in the image. After the input image is provided, the histogram for each 
color channel (R, G, and B) is computed separately. Then, each tested method is independently executed on each 
channel to obtain the corresponding results.
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Proposed ABC approach for multilevel thresholding
The traditional ABC algorithm is a population-based metaheuristic that, after the initialization of the population, 
executes three stages: employed, onlooker and scout, within a predefined number of iterations18. In addition 
to the common control parameters for all population-based metaheuristics, such as population size (SP) and 
maximum iteration number (MIN), the classic ABC features a specific control parameter limit. This parameter 
is used during the scout phase to regulate the exploration of new solutions.

The details of the ABC method applied to multilevel thresholding are outlined below.
Step 1. (Calculate the new population)
After initializing the control parameters, the ABC algorithm generates a population of SP solutions randomly 

across the search space. The lower and upper boundaries of the search space are defined as 0 and 255, respectively, 
corresponding to the intensity levels of the image. The set of solutions can be represented by matrix T.

 T = [t1, t2, ..., tSP/2], ti = [ti,1, ti,2, ..., ti,k] (5)

where i = {1, 2, ..., SP/2} is the index of a solution in the population and k is the number of thresholds to be 
determined for the multilevel thresholding problem. Each ti represents a candidate solution, while ti,j  denotes 
the jth threshold within solution ti, for j = {1, 2, ..., k}. Each component jth is bounded value into [0, ..., 255] 
and the ti,j < ti,j+1 for all j. The objective function values for all solutions ti are evaluated, current best solution 
is calculated and variable iter is set to 1.

Step 2. (Employed stage)
In the employed stage, every solution ti,  i = 1, 2, ..., SP/2, is subjected to an update procedure described 

as follows:

 vi,j = ti,j + φ · (ti,j − t,) (6)

where j represents a randomly assigned parameter index, φ represents a uniformly distributed random number 
within the range (−1,1), tl indicates the other component randomly chosen from the population. The boundary 
conditions of the potential solution vi are checked after its creation. If a variable surpasses the defined search 
space limits, its value is corrected to the closest boundary within the allowed range. The update process finishes 
with a greedy choice between ti and vi.

Step 3. (Onlooker stage)
The individuals are chosen according to the probability specified by:

 pi = 0.9 · (fiti/maxfit) + 0.1 (7)

where maxfit is the best fitness value of the population and fiti denotes the fitness value of the ith solution in the 
population. A fitness value of the each solution fiti, i = 1, 2, ..., SP , is calculated as follows:

 
fiti =

{ 1/(1 + f(ti)), if f(ti) ≥ 0,
1 + abs(f(ti)) , otherwise  (8)

where f(·) is the Otsu objective function (Eq. (3)) and abs(·) is the absolute value. During the onlooker phase, 
the individuals chosen for the update process are selected based on fitness proportionate selection. The update 
process in the onlooker stage is identical to that in the employed stage.

Step 4. (Scout stage)
Choose one of the least active solutions and replace it with a newly generated random solution. The ABC 

method computes triali for each individual ti over the search. These values indicate the number of failed 
attempts for each individual, which are used to decide on abandonment. In scout stage, if the highest trial value 
exceeds the limit parameter, the corresponding individual is renewed with a newly created random solution.

Step 5. (Store the best solution)
Store the best solution found so far (tbest) and increase the variable iter by one.
Step 6. (Verify the stopping condition)
If iter reaches the maximum number of iterations, terminate the algorithm; otherwise, return to Step 2.

Proposed GABC approach for multilevel thresholding
The GABC approach modifies the ABC search strategy by integrating information from the global best 
individual26. This approach uses the following modified ABC search equation in employed and onlooker stages:

 vi,j = ti,j + φi,j · (ti,j − th,j) + ϕi,j · (yj − ti,j) (9)

where vi represent a new potential solution, ti is current ith solution, th is another individual picked randomly 
from the population, yj  is the jth component of the global best individual, φi,j  is a uniformly distributed random 
number within the range (−1, 1) and ϕi,j  is a uniformly distributed random number within the range [0, 1.5].

The GABC approach for multilevel image thresholding follows the same procedure outlined in the previous 
subsection. The sole difference is that in both bee phases, Eq. (6) is replaced by Eq. (9).

Proposed SB-ABC approach for multilevel thresholding
The SB-ABC algorithm utilizes modified ABC search operators in both the employed and onlooker stages27. In 
employed phase, the SB-ABC uses the following search strategy to produce a possible candidate individual vi:

Scientific Reports |        (2025) 15:22041 4| https://doi.org/10.1038/s41598-025-05238-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


 
vi,j =

{
ti,j + φi · (ti,j − th,j) , if Ri,j < MR
ti,j , otherwise  (10)

where j = 1, 2, ..., k. In Eq. (10) ti is the current ith individual from the population and th denotes another 
solution chosen randomly. The MR parameter is a modification rate control parameter within the range (0, 1), 
where higher values increase the probability of changing more parameters in the parent solution. Also in this 
equation φi and Rij  are uniformly distributed random numbers, where φi is in (−1, 1) and Rij  is in (0,1).

In onlooker stage, the SB-ABC employs the following search equation to construct a possible new individual 
vi:

 
vi,j =

{
ti,j + φi,j · (ti,j − th,j)

+ ϕi,j · (yj − ti,j), if Ri,j < MR

ti,j , otherwise
 (11)

where j = 1, 2, ..., k. In Eq.  (11) ti is the current ith individual, th indicates another solution selected at 
random from the population, yj  is the jth component of the current best individual and MR is modification rate 
parameter. In this equation φi and Ri,j  are random variables with a uniform distribution, where φi is in (−1, 1) 
and Ri,j  is in (0,1). In addition, in both bee stages, at every RPPIth cycle, the shuffle mutation operator is applied 
to create novel candidate solutions, where RPPI is a new control parameter called the random permutation 
production interval.

The SB-ABC approach consists of all the steps mentioned in the Sect. "Proposed ABC approach for multilevel 
thresholding". The only difference is that, in the employed phase, Eq. (6) is replaced by Eq. (10), while in the 
onlooker phase, Eq. (6) is replaced by Eq. (11).

Proposed CER approach for multilevel thresholding
The Rao-1 algorithm enhanced with chaotic behavior (CER) is proposed to solve multilevel thresholding 
problem28. The Chebyshev map has been used due to its superior performance compared to other chaotic maps. 
The CER is a metaphor-free optimization algorithm with two common control parameters, population size and 
maximum number of iterations.

The main steps of the CER algorithm involve initializing the population, identifying the best and worst 
solutions and updating the population of solutions. The current solution from the population ti is updated using 
the following search equation:

 vi,j = ti,j + zl · (bestj − worstj) (12)

where j = 1, 2, ..., k. In Eq.  (12) best and worst represent the best and worst solutions in the population. 
Parameter zl is the parameter obtained from the Chebyshev map by the next equation28:

 zl+1 = cos
(
l · cos−1(zl)

)
 (13)

During the population update process, the iteration loop starts, updating each solution from the population 
according to Eq. (12) and evaluating their objective function values. At the end of each iteration, the best and 
worst solutions are updated. The loop terminates when the maximum number of iterations is reached.

Proposed giABC approach for multilevel thresholding
In metaheuristics, exploitation refines existing solutions by focusing on promising regions of the search space, 
while exploration involves discovering new solutions farther from current ones. According to Eq.  (6), the 
new solution is generated by moving the old one to a random location, promoting exploration but limiting 
exploitation.

To overcome these limitations, the proposed giABC algorithm introduces two modified search strategies in 
the employed and onlooker phases. Both search mechanisms incorporate a dynamically guided search vector, 
mtbest, while the onlooker phase further utilizes an additional exploitation term. Together, these enhancements 
enable giABC to achieve a robust balance between exploration and exploitation, leading to improved convergence 
speed and solution quality.

The proposed giABC algorithm, in the employed phase, utilizes the following modified search strategy to 
produce a candidate solution vi:

 
vi,j =

{
ti,j + φi · (mtbest,j − th,j) , if Ri,j < MR
ti,l + φi · (mtbest,l − th,l) , otherwise  (14)

where j = 1, 2, ..., k. In Eq.  (14), ti is the current ith individual, th is a randomly selected individual,  is a 
randomly chosen index in [1, k], φi is a random number in [0, 1] fixed for all parameters of ti and MR is the 
modification rate parameter.

The vector mtbest, which is used to guide the search process, is computed in each iteration as follows:

 
mtbest =

y +
∑

n∈Si
tn

length(Si) + 1
 (15)
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where y is the current best individual, and Si is the set of individuals with higher objective function values than 
ti.

Updates based on mtbest focus on promising regions of the search space, while the random selection of  
maintains diversity, reducing the risk of premature convergence.

In the onlooker phase, the giABC algorithm uses the following modified mutation operator to create a 
candidate solution:

 vi,j = ti,j + φi,j · (mtbest,j − th,j) + φi,j · (yj − ti,j) (16)

where j = 1, 2, ..., k. In Eq.  (16), ti,j  is the jth dimension of the ith individual, th is a randomly selected 
individual, mtbest is the guiding vector calculated by Eq. (15), y is the current best individual in the population 
and Ri,j  is a random number with a uniform distribution in [0, 1]. The values of φi,j  are computed as the 
product of two uniformly distributed random numbers in [0, 1], independently generated for each term in the 
equation.

The onlooker phase emphasizes exploitation by incorporating both mtbest and y in the search process. The 
additional term directs the algorithm more strongly toward the globally best solution, enhancing convergence 
speed. The values of φi,j  which favour smaller numbers, allow for precise adjustments during the search process. 
The introduced modifications make the onlooker phase more exploitation-focused compared to the employed 
phase.

The algorithm implements all three phases of the original ABC algorithm mentioned in the Sect. "Proposed 
ABC approach for multilevel thresholding". However, it modifies the employed phase by utilizing the search 
strategy described in Eq. (14), and the onlooker phase by employing the equation defined in Eq. (16).

The giABC algorithm retains the core structure of the original ABC algorithm, introducing improvements 
without increasing its complexity. It adds only one additional control parameter, MR, which is commonly used 
in applications of ABC for integer programming problems. This ensures that giABC maintains the simplicity of 
ABC while significantly enhancing its performance.

Experimental study
This section presents results obtained by the CER, ABC, GABC, SB-ABC and giABC metaheuristics used to solve 
the multilevel color image thresholding problem. Extensive experiments were conducted on twelve color test 
images from the Berkeley Segmentation Dataset32 to evaluate the effectiveness of these algorithms for multilevel 
color image thresholding. The test images include: #147091 (tree), #157055 (couple), #182053 (train), #148089 
(gate), #197017 (horses), #97033 (house), #260058 (pyramid), #253027 (zebras), #223061 (facade), #38082 
(deer), #19021 (cactus), #86068 (fishes). For simplicity, these images were referred to by their respective names 
in parentheses throughout the paper. These images are segmented using threshold color values of 6, 8, 10 and 12.

Metrics for evaluating image quality
The Peak Signal-to-Noise Ratio (PSNR) is an important metric for evaluating image segmentation quality33. It 
measures the ratio between maximum signal strength and noise level, with the result expressed in decibels. A 
higher PSNR indicates better thresholding quality. The PSNR is calculated by8:

 
PSNR = 10 log10

(
2552

MSE

)
 (17)

The mean square error (MSE) is defined by the following formula:

 
MSE = 1

mn

m∑
i=1

n∑
j=1

[I(i, j) − S(i, j)]2 (18)

where m × n denotes the image size, while S(i,  j) and I(i,  j) represent the segmented and actual images, 
respectively. For an RGB color image, the PSNR is calculated separately for each of the three primary color 
channels, and the overall PSNR for the color image is taken as the average of these individual values31.

The Structural Similarity Index Method (SSIM) is a perception-based model that views image degradation 
as a change in perceived structural information33. The similarity between the original image and the segmented 
images can be described as follows:

 
SSIM = (2µIµS + C1)(2σIS + C2)

(µ2
I + µ2

S + C1)(σ2
I + σ2

S + C2)  (19)

where µI  and µS  are the averages of I and S, respectively, and σI  and σS  represent the variances of I and S31. The 
local correlation coefficient between I and S is denoted by σIS , while C1 and C2 are constants.

The SSIM can be adapted for RGB color images, as demonstrated below31:

 
SSIM =

∑
c

SSIM(IT , ST ) (20)
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where I and S represent the original image on the Tth channel and the multilevel thresholded image on the Tth 
channel, respectively, where T  is the channel number. A higher SSIM value signifies improved quality in the 
thresholding process.

Experimental configuration
To ensure a fair comparison, all five algorithms, the CER, ABC, GABC, SB-ABC and giABC, are set to operate 
with a population size of 40 and a maximum of 4000 function evaluations. The initial population for each 
metaheuristic approach is generated randomly and uniformly over the interval [0,255].

In the ABC and GABC algorithms, the control parameter limit is set to 50, based on the original paper18. For 
the SB-ABC algorithm, the control parameters are configured with limit set to 50, RPPI to 3 and MR to 0.8, as 
recommended in the respective study27. In the giABC algorithm, the parameter limit is set to 50, as suggested in 
the original paper18, while the parameter MR is set to 0.8, as recommended in the previous study34.

Each of the five algorithms is repeated 40 times independently for each image, each channel and for each k 
value. The algorithms were implemented in Java programming language. The tested algorithms were executed 
on a PC equipped with an Intel(R) Core(TM) i5-4460 processor running at 3.2 GHz, 16 GB of RAM, and a 
Windows operating system. The performance evaluation metrics include the objective function value, peak 
signal-to-noise ratio (PSNR), structural similarity index (SSIM) and computation time.

Objective function value comparison
To evaluate the robustness of the proposed algorithms, the mean objective function values were calculated. 
These values were obtained by averaging the threshold values for the three color channels (R, G, B) across 40 
independent runs for each image.

The procedure was repeated for 12 images at threshold levels of 6, 8, 10 and 12, ensuring a comprehensive 
evaluation of algorithm performance under varying segmentation complexities. This resulted in a single 
representative mean value for each algorithm, capturing its overall stability and consistency across the dataset.

Table 1 presents a comparison of the mean Otsu threshold values across the color channels (R, G, B) calculated 
over 40 independent runs for the CER, ABC, GABC, SB-ABC and giABC algorithms.

As presented in Table 1, giABC consistently achieves the best average results across all thresholds 
(k = 6, 8, 10, 12) and channels (R, G, B), with a final rank of 1.0, demonstrating superior robustness. The GABC 
has a final rank of 2.0, demonstrating strong performance in terms of the stability of the obtained results. In 
contrast, SB-ABC, ABC and CER exhibit lower stability, with ranks of 3.0, 4.0 and 5.0, reflecting their limitations 
in maintaining consistent performance compared to the GABC and giABC variants.

Figure 1 shows the convergence behavior of the tested algorithms across different color channels (R, G, B) 
for two selected images. The proposed giABC algorithm demonstrates superior performance, achieving faster 
convergence and higher objective values compared to other algorithms, particularly CER. While the giABC and 
SB-ABC show competitive early performance, giABC achieves the most stable and accurate results, ensuring 
robustness across all color channels.

PSNR and SSIM comparison
The PSNR and SSIM values for the twelve test images were assessed following segmentation with thresholds that 
maximize Otsu’s objective function. Table 2 displays the PSNR values and performance rankings for the CER, 
ABC, GABC, SB-ABC and giABC approaches. As mentioned earlier, a high PSNR value signifies high quality in 
the segmented image, which in turn indicates strong performance of the optimization method.

As indicated in Table 2, the giABC algorithm demonstrated the highest performance with respect to PSNR, 
achieving a final rank of 1.9. The SB-ABC and GABC algorithms showed competitive results, with final ranks of 
2.5 and 2.9, respectively, all outperforming the ABC algorithm, which achieved a rank of 3.7. The CER method, 
with a final rank of 4.1, showed relatively lower PSNR values compared to the other algorithms.

Additionally, a high SSIM value reflects strong performance of the optimization method. Based on the SSIM 
values presented in Table 3, the algorithms can be ranked from best to worst as giABC, SB-ABC, GABC, ABC 
and CER, with final rankings of 2.0, 2.3, 2.8, 3.6 and 4.2, respectively.

To examine the differences between the proposed giABC algorithm and other algorithms (SB-ABC, GABC, 
ABC and CER) for the mean, PSNR and SSIM metrics, we performed the Wilcoxon signed-rank test at a 
significance level of 0.0535. All p values were calculated using the R software package (version 4.1.2).

The results of the Wilcoxon signed-rank test are presented in Table  4, which includes the names of the 
compared approaches, the p values, and the decision on the null hypothesis for the mean, PSNR and SSIM 
metrics. The symbol ’+’ denotes that the first algorithm is significantly better than the second, ’−’ indicates that 
the first algorithm is significantly worse, and ’≈’ signifies that there is no significant difference between the two 
algorithms.

As shown in Table  4, the p values indicate that the proposed giABC algorithm performs significantly 
better than each of the other tested algorithms (SB-ABC, GABC, ABC and CER) for mean, PSNR and SSIM 
metrics. These results highlight the ability of the proposed giABC algorithm to achieve superior performance in 
segmentation quality compared to the other approaches.

Computational time comparison
In this subsection, the computational times of the CER, ABC, GABC, SB-ABC and giABC algorithms have been 
examined. The average computational time for these algorithms over 40 runs at level 10 is provided in Table 5 
as an example.

As shown in Table 5, the five approaches demonstrate execution times ranging from 60 to 175 ms, indicating 
that all algorithms exhibit computational times suitable for most applications. The CER algorithm demonstrated 
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Image k CER ABC GABC SB-ABC giABC

 Tree

6 4859.9033 4876.5549 4876.7651 4876.6100 4876.7962

8 4890.3530 4905.2001 4905.7636 4905.5464 4905.8932

10 4906.8139 4920.3463 4921.1796 4920.7512 4921.3329

12 4917.5321 4928.8011 4929.4544 4929.1108 4929.8417

 Couple

6 3601.8945 3612.5212 3612.7983 3612.7695 3612.8471

8 3624.7707 3641.7794 3642.2945 3642.1923 3642.3787

10 3640.8854 3655.8430 3656.8610 3656.6203 3657.0518

12 3651.9828 3664.2129 3665.1776 3664.8916 3665.4214

 Train

6 2938.2848 2955.4035 2955.5050 2955.4883 2955.5086

8 2967.0765 2980.2403 2980.7058 2980.4001 2980.7017

10 2981.0184 2993.6988 2994.5071 2994.0599 2994.6735

12 2991.1845 3001.5436 3002.0408 3001.7149 3002.3660

 Gate

6 3660.6080 3677.0130 3677.3040 3677.2176 3677.3570

8 3690.8207 3707.3913 3708.1509 3707.6800 3708.3024

10 3708.7962 3722.5214 3723.3458 3722.8053 3723.7608

12 3718.4767 3731.3513 3731.9225 3731.5036 3732.2350

 Horses

6 4211.6579 4225.7851 4225.9312 4225.8100 4225.9521

8 4236.1157 4250.8090 4251.1841 4251.0080 4251.2317

10 4250.8080 4264.0036 4264.7005 4264.2547 4264.8041

12 4260.3979 4271.8965 4272.6558 4272.3119 4272.9420

 House

6 5865.2798 5885.3082 5885.3781 5885.2361 5885.3788

8 5904.7167 5915.3823 5915.8119 5915.6391 5915.9051

10 5922.8398 5933.3558 5934.0493 5933.9525 5934.1800

12 5927.5748 5943.7444 5944.4150 5944.4111 5944.6401

 Pyramid

6 1161.1855 1172.8416 1173.0146 1172.8488 1173.0152

8 1175.6041 1187.6567 1188.1497 1187.7445 1188.4015

10 1185.5482 1194.9909 1195.8182 1195.1012 1196.0894

12 1191.5761 1199.4767 1200.4433 1199.9097 1200.8832

 Zebras

6 1650.8544 1664.7541 1664.9082 1664.8566 1664.9175

8 1672.1639 1684.7165 1685.3398 1685.0926 1685.4100

10 1683.4785 1694.6483 1695.3812 1695.1431 1695.5604

12 1691.0116 1700.3457 1701.2331 1700.9812 1701.4609

 Facade

6 3726.0243 3744.2400 3744.4537 3744.3795 3744.4617

8 3755.5129 3773.4348 3773.9274 3773.7643 3773.9944

10 3772.2689 3787.9347 3788.7209 3788.2796 3788.8832

12 3783.2284 3796.2698 3797.1557 3796.7849 3797.4102

 Deer

6 1145.2634 1159.5526 1159.7663 1159.4298 1159.8016

8 1161.8623 1175.6514 1176.1163 1174.9924 1176.3960

10 1171.8749 1183.4943 1184.3292 1182.7806 1184.9528

12 1178.2977 1188.1040 1188.7987 1187.8724 1189.6049

 Cactus

6 2155.6813 2169.8072 2169.9772 2169.9165 2169.9949

8 2179.2314 2193.7225 2194.1539 2193.9837 2194.2412

10 2188.0704 2205.2288 2205.9348 2205.7119 2206.0963

12 2201.4624 2211.5532 2212.4349 2212.1720 2212.7157

 Fishes

6 1035.3956 1055.7673 1055.8909 1055.8617 1055.9043

8 1061.0980 1071.0967 1071.7036 1071.4334 1071.7710

10 1069.3212 1078.6203 1079.6517 1079.1364 1079.7747

12 1075.1456 1082.9400 1084.1164 1083.6488 1084.4607

Avg. rank per threshold

6 5.0 4.0 2.0 3.0 1.0

8 5.0 4.0 2.0 3.0 1.0

10 5.0 4.0 2.0 3.0 1.0

12 5.0 4.0 2.0 3.0 1.0

Final rank 5.0 4.0 2.0 3.0 1.0

Table 1. Comparison of the mean Otsu threshold values across the color channels (R, G, B) for each algorithm 
(CER, ABC, GABC, SB-ABC and giABC), computed over 40 independent runs.
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the fastest computational time but at the cost of lower segmentation quality. In contrast, SB-ABC required the 
most time, while the computational times of ABC, GABC, and giABC were comparable, with giABC being 
slightly slower but offering superior segmentation quality.

To further enhance the efficiency of metaheuristic optimization algorithms, approaches such as optimizing 
stopping criteria36 and leveraging parallel computing techniques on graphics processing units37 can be explored. 
These strategies could reduce computational time while maintaining the quality of results.

The three ABC variants consistently outperformed the standard ABC and CER algorithms in terms 
of accuracy, PSNR, SSIM, and stability. Among them, giABC demonstrated the most accurate and stable 
segmentation results, achieving the highest PSNR and SSIM values. This makes giABC particularly suitable for 
complex multilevel thresholding tasks in fields such as medical imaging, remote sensing, and object recognition.

Diversity behaviour analysis of ABC variants
This section analyzes the diversity performance of the ABC methods for color multilevel thresholding.

Diversity points to divergences between agents of population38. Varied population is essential for exploring 
novel areas of a search space. However, encouraging diversity in each generation may lead to improper ratio 
between exploiting previously found promising points and exploration.

The following diversity metric is employed to evaluate the differences among agents in the whole population39:

 
Divj = 1

SP

SP∑
i=1

medj − xi,j  (21)

 
Div(t) = 1

D

D∑
i=1

Divj  (22)

In the Eq. (21), medj  represents the median of jth component across the entire population, xi,j  denotes jth 
component of ith solution individual and SP is the total number of individuals. Value Divj  indicates diversity in 
the jth dimension. The Eq. (22) is used to calculate the population diversity in tth iteration.

Diversity performance of the ABC, GABC, SB-ABC and giABC, for two test images with 10 thresholds for 
the red, green and blue channels is demonstrated in Fig. 2. As shown in the Fig. 2, all algorithms exhibit a decline 
in diversity during the search process. This behaviour is expected, as the algorithms progressively converge 
toward optimal solutions, reducing the diversity within the population.

Figure 2 illustrates that the diversity in the ABC algorithm remains higher than that of the GABC, SB-ABC 
and giABC variants at each iteration of the search process. This higher diversity in the ABC method is attributed 
to its limited exploitation ability, as its solution search strategy depends on a randomly selected neighbouring 
food source. In contrast, the three analysed ABC variants utilize the best solution found so far to guide the 
subsequent search process.

Specifically, the differences among agents in SB-ABC are lower in comparison with other variants of ABC. 
This indicates that favorable regions of the search space in SB-ABC are often identified in the early stages of the 
search. As a result, this algorithm may, in some runs, get trapped in a local minimum, while in others, it has the 
potential to find highly accurate solutions. In later iterations, the diversity in giABC is lower than in GABC but 

Fig. 1. Convergence curves for the ABC, GABC, SB-ABC, giABC and CER on certain images across different 
channels and threshold levels: (a) Tree (red, k = 8), (b) Tree (red, k = 10), (c) Tree (red, k = 12), (d) Facade (red, 
k = 8), (e) Facade (green, k = 10), (f) Facade (blue, k = 12).
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Image k CER ABC GABC SB-ABC giABC

 Tree

6 30.4364 30.7576 30.7713 30.7713 30.7713

8 32.5999 32.8832 32.8725 32.9856 32.9856

10 34.0342 34.8975 34.8975 34.9639 34.9639

12 35.4670 36.4951 36.4951 36.5222 36.5000

 Couple

6 28.8540 28.9712 29.1546 29.1546 29.1546

8 30.3033 30.6918 30.7312 30.7312 30.7312

10 31.2976 31.6884 32.0842 32.1137 32.1137

12 31.8315 33.0792 33.1303 33.1616 33.1435

 Train

6 30.8504 30.5983 30.6837 30.6837 30.6837

8 32.8119 33.5016 33.5269 33.5269 33.5269

10 34.6977 35.3074 35.2972 35.4134 35.4014

12 35.9397 37.1520 37.1402 37.2837 37.3398

 Gate

6 26.3436 30.0341 30.4262 30.4240 30.4240

8 33.7637 34.2290 34.3347 34.3347 34.3347

10 35.9373 36.4920 36.4903 36.6561 36.6666

12 36.6659 35.2062 35.2569 35.2225 35.3150

 Horses

6 28.0653 28.5530 28.5858 28.5858 28.5858

8 30.6902 30.6816 30.6804 30.6908 30.6908

10 30.9723 33.1310 33.2320 33.2642 33.2654

12 34.0326 34.8266 34.8713 34.8141 34.8865

 House

6 30.0540 29.9582 29.9582 29.9582 29.9582

8 32.0458 32.6963 32.7660 32.7660 32.7660

10 34.1216 35.1054 35.1713 35.2748 35.2748

12 35.3372 36.4536 36.9461 36.9198 36.9004

 Pyramid

6 28.3815 28.2342 28.3079 28.3079 28.3079

8 32.0031 31.2154 30.5806 31.2762 31.2762

10 32.9597 33.6324 33.6495 33.9052 33.9732

12 34.3675 36.6156 36.8728 36.5534 37.0079

 Zebras

6 28.8949 27.9026 28.0200 28.0200 28.0200

8 29.8262 30.4789 30.4869 30.4869 30.4869

10 32.6115 32.5127 32.3718 32.5925 32.5944

12 33.1114 33.3965 34.0889 34.0591 34.0591

 Fascade

6 28.7297 27.9067 27.8977 27.8977 27.8977

8 30.2063 30.1416 30.1007 30.2313 30.2313

10 32.6366 31.4686 31.6778 31.6769 31.6827

12 32.8409 33.5103 33.4914 33.4322 33.5200

 Deer

6 29.6661 28.8816 28.8816 28.8816 28.8816

8 29.6801 31.1279 31.1412 31.1363 31.1412

10 33.2299 33.0922 33.2075 33.2076 33.4029

12 32.6291 34.6989 34.7179 34.7430 34.9403

 Cactus

6 30.6384 30.7134 30.7134 30.7134 30.7134

8 32.0572 32.5290 32.5033 32.5033 32.5033

10 33.6708 33.4472 33.3884 33.0830 33.4559

12 33.6418 33.8738 33.5698 33.9330 33.9401

 Fishes

6 29.1191 29.4941 29.4941 29.4941 29.4941

8 30.5610 30.6523 30.7603 30.7603 30.7603

10 32.6085 31.7218 31.7514 31.7135 31.7510

12 32.4985 32.4484 32.5164 32.4983 32.3669

Avg. rank per threshold

6 3.9 3.6 2.5 2.5 2.5

8 4.2 3.6 2.9 2.1 2.0

10 3.6 3.9 3.5 2.6 1.6

12 4.5 3.6 2.9 2.6 1.5

Final rank 4.1 3.7 2.9 2.5 1.9

Table 2. Comparison of PSNR calculated by CER, ABC, GABC, SB-ABC and giABC.
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Image k CER ABC GABC SB-ABC giABC

 Tree

6 0.8778 0.8800 0.8800 0.8800 0.8800

8 0.8970 0.9065 0.9051 0.9056 0.9056

10 0.9191 0.9252 0.9255 0.9260 0.9260

12 0.9312 0.9403 0.9408 0.9408 0.9412

 Couple

6 0.9074 0.9082 0.9105 0.9105 0.9105

8 0.9319 0.9347 0.9361 0.9361 0.9361

10 0.9449 0.9462 0.9476 0.9476 0.9476

12 0.9494 0.9547 0.9551 0.9547 0.9549

 Train

6 0.9392 0.9377 0.9387 0.9387 0.9387

8 0.9428 0.9563 0.9564 0.9564 0.9564

10 0.9551 0.9577 0.9576 0.9579 0.9578

12 0.9634 0.9665 0.9679 0.9685 0.9690

 Gate

6 0.8982 0.9436 0.9458 0.9462 0.9462

8 0.9682 0.9677 0.9682 0.9682 0.9682

10 0.9749 0.9794 0.9791 0.9794 0.9795

12 0.9767 0.9698 0.9707 0.9707 0.9709

 Horses

6 0.8701 0.8660 0.8669 0.8669 0.8669

8 0.8936 0.8965 0.8976 0.8980 0.8980

10 0.9165 0.9273 0.9288 0.9309 0.9309

12 0.9427 0.9466 0.9473 0.9465 0.9478

 House

6 0.9003 0.9009 0.9009 0.9009 0.9009

8 0.9263 0.9360 0.9375 0.9375 0.9375

10 0.9519 0.9541 0.9560 0.9565 0.9565

12 0.9561 0.9658 0.9661 0.9656 0.9654

 Pyramid

6 0.8695 0.8737 0.8743 0.8743 0.8743

8 0.9175 0.9206 0.8509 0.9208 0.9208

10 0.9363 0.9431 0.9452 0.9458 0.9463

12 0.9475 0.9647 0.9654 0.9650 0.9658

 Zebras

6 0.9027 0.9037 0.9038 0.9038 0.9038

8 0.9307 0.9385 0.9385 0.9385 0.9385

10 0.9507 0.9564 0.9569 0.9586 0.9586

12 0.9645 0.9645 0.9688 0.9681 0.9681

 Fascade

6 0.8916 0.8936 0.8919 0.8919 0.8919

8 0.9137 0.9160 0.9154 0.9159 0.9159

10 0.9353 0.9324 0.9341 0.9344 0.9344

12 0.9458 0.9458 0.9466 0.9463 0.9475

 Deer

6 0.9450 0.9358 0.9358 0.9358 0.9358

8 0.9506 0.9610 0.9611 0.9611 0.9611

10 0.9782 0.9734 0.9745 0.9743 0.9754

12 0.9721 0.9806 0.9745 0.9815 0.9812

 Cactus

6 0.9280 0.9317 0.9317 0.9317 0.9317

8 0.9464 0.9509 0.9505 0.9505 0.9505

10 0.9563 0.9596 0.9599 0.9571 0.9605

12 0.9596 0.9630 0.9615 0.9633 0.9633

 Fishes

6 0.9282 0.9351 0.9351 0.9351 0.9351

8 0.9489 0.9533 0.9536 0.9536 0.9536

10 0.9595 0.9619 0.9624 0.9627 0.9626

12 0.9618 0.9665 0.9662 0.9666 0.9667

Avg. rank per threshold

6 3.7 3.5 2.7 2.6 2.6

8 4.6 3.5 2.8 2.1 2.1

10 4.0 4.0 3.2 2.2 1.7

12 4.6 3.7 2.5 2.5 1.8

Final rank 4.2 3.6 2.8 2.3 2.0

Table 3. Comparison of SSIM calculated by CER, ABC, GABC, SB-ABC and giABC.
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remains higher than in SB-ABC, as shown in Fig. 2. This balance in diversity allows giABC to avoid premature 
convergence better than SB-ABC, while still maintaining a competitive level of exploration.

Overall, the results demonstrate that giABC achieves a superior balance between maintaining sufficient 
diversity and driving convergence. This makes it less prone to premature convergence while still being capable of 
achieving highly competitive solutions across all tested scenarios.

Fig. 2. Diversity performance of the ABC, GABC, SB-ABC and giABC for certain images with 10 thresholds: 
(a) Tree (red), (b) Tree (green), (c) Tree (blue), (d) Gate (red), (e) Gate (green), (f) Gate (blue).

 

Image CER ABC GABC SB-ABC giABC

Tree 66.4 82.0 94.3 160.1 96.4

Couple 72.8 90.0 89.1 147.2 102.7

Train 78.4 98.0 101.6 174.0 103.3

Gate 64.1 79.1 79.4 141.7 89.4

Horses 72.2 89.1 89.9 156.7 99.4

House 68.7 84.9 93.9 124.3 97.1

Pyramid 64.2 80.3 82.4 137.1 95.5

Zebras 71.4 88.8 92.8 138.0 99.1

Facade 69.2 85.2 87.4 118.2 96.2

Deer 66.3 82.5 86.1 117.6 95.1

Cactus 60.1 74.1 74.8 105.1 84.3

Fishes 61.3 76.4 77.4 111.2 86.5

Table 5. Average computational times in milliseconds for the CER, ABC, GABC, SB-ABC, and giABC 
algorithms at level 10.

 

Algorithm

Mean PSNR SSIM

p value Dec. p value Dec. p value Dec.

giABC versus SB-ABC 7.00E−15 + 3.00E−02 + 1.00E−02 +

giABC versus GABC 4.00E−12 + 2.00E−04 + 2.00E−04 +

giABC versus ABC 7.00E−15 + 8.00E−08 + 3.00E−06 +

giABC versus CER 7.00E−15 + 6.00E−04 + 9.00E−07 +

Table 4. Wilcoxon’s rank-sum test results for the mean value, PSNR and SSIM metrics comparing giABC with 
other algorithms.
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Conclusion
This paper presents the globally informed artificial bee colony (giABC), an enhanced ABC variant proposed 
for multilevel color image thresholding. By incorporating two novel mutation operators, giABC introduces 
dynamic guidance toward the mean of better solutions in the employed phase and combines global best 
attraction with adaptation to promising solutions in the onlooker phase. These modifications ensure a sustained 
balance between exploration and exploitation, resulting in increased convergence speed and improved solution 
quality. The proposed giABC, along with the standard ABC, its two variants, and the chaotically-enhanced Rao 
algorithm, were evaluated on twelve benchmark color images using Otsu’s objective function.

Comprehensive evaluations based on the objective function, PSNR and SSIM showed that giABC consistently 
outperformed competing methods across all metrics. Furthermore, the giABC algorithm proved particularly 
effective for complex multilevel thresholding tasks at higher threshold values, with statistical validation 
confirming its significance. An analysis of computational time revealed that the CER algorithm is the most 
efficient, although all algorithms demonstrated processing times suitable for most applications.

In future work, further improvements in computational efficiency can be achieved by optimizing stopping 
criteria to minimize unnecessary iterations and exploring parallel computing techniques to accelerate the 
performance of the algorithms. Expanding the image dataset to include medical and satellite images, as well as 
applying alternative thresholding criteria could be considered to further validate the effectiveness of the proposed 
giABC algorithm. Additionally, future research could investigate developing hybrid approaches that combine 
giABC with other deterministic or stochastic methods to address other complex optimization problems.
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