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Abstract: - Firefly algorithm (FA) is recently developed nature-inspired metaheuristic based on the flashing 

patterns and behaviour of fireflies. Original FA was successfully applied to solve unconstrained optimization 

problems. This paper presents firefly algorithm to solve constrained optimization problems. For constraint 

handling, firefly algorithm uses certain feasibility-based rules in order to guide the search to the feasible region.  

Our proposed approach is tested on nine well-known benchmark functions. Obtained results are compared to 

those of the state-of-the-art algorithms. 
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1 Introduction 
As many optimization problems involve a number 

of constraints that the decision solutions need to 

satisfy, the aim of constrained optimization is to 

search for feasible solutions with better objective 

values. Generally, a constrained optimization 

problem is to find x so as to 

minimize f(x), n
n Rxxx  ),...,( 1  (1) 

where SFx  . 
 

The objective function f  is defined on the search 

space nRS   and the set SF  defines the feasible 

region. The search space S is defined as an n-

dimensional rectangle in nR . The variable domains 

are limited by their lower and upper bounds: 
 

iii uxl  , ni 1    (2) 
 

whereas the feasible region SF   is defined by a 

set of m additional constraints ( 0m ): 
 

,0)( xg j  for qj ,...,1    (3) 

,0)( xh j  for mqj ,...1    (4) 
 

For an inequality constraint that satisfies 0)( xg j
, 

we will say that is active at x. All equality 

constraints jh  (regardless of the value of x used) are 

considered active at all points of F. Both the 
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objective function and the constraints can be linear 

or nonlinear.  

Finding optimal solutions to these problems 

requires efficient optimisation algorithms. Applica-

bility of the deterministic methods is limited, since 

they use a variety of assumptions (such as 

continuity) about the search space before they 

actually start the search [1]. Having regard to the 

fact that they are quite efficient in finding local 

optima, a common practice is to introduce a 

stochastic component to an algorithm in order to 

avoid the possibility for the algorithm to be trapped 

at local optima. 

Different stochastic optimization algorithms have 

been developed [2], [3] and later improved for 

solving constrained optimization problems [4], [5], 

[6], [7], [8], [9]. Among the most popular meta-

heuristics are those based on mimicking different 

natural phenomena and biological models [10], [11]. 

Some of the most popular nature inspired meta-

heuristics are genetic algorithm (GA), inspi-

red by Darwin's theory about evolution, particle 

swarm optimization (PSO) algorithm, inspired by 

the social behavior of birds or fishes and artificial 

bee colony (ABC) algorithm, based on honey bee 

foraging behavior. 

Firefly Algorithm (FA) proposed by Yang is one 

of the new metaheuristic techniques inspired by the 

flashing behaviour of fireflies. FA was proposed to 

solve unconstrained optimization problems [12]. 

Simulation results indicate that FA is superior over 

GA and PSO. Also, an object-oriented software 

implementation of FA [13], as well as implemen-
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tation of the parallelized FA was provided [14]. In 

[15] FA was applied to solve mixed variable 

structural optimization problems. Furthermore, 

different variants of FA have been developed and 

used in many practical fields [16], [17]. 

Since most of the basic versions of nature-

inspired search algorithms lack a mechanism to deal 

with the constraints of a numerical optimization 

problem, constraint handling techniques are usually 

incorporated in the algorithms in order to direct the 

search towards the feasible regions of the search 

space [18]. The most common approach adopted to 

deal with constrained search spaces is the use of 

penalty functions. In these methods, a constrained 

problem is solved as an unconstrained one, where 

the objective function is designed such that 

infeasible solutions are characterized by high 

function values (in minimization cases). Despite the 

popularity of penalty functions, regard its simplicity 

and direct applicability, they have several 

drawbacks. The main one is that they require a 

careful fine tuning of the penalty factors that 

estimate the degree of penalization to be applied. 

The constraint-handling approach used in this 

paper is based on three feasibility rules, also called 

Deb's rules, proposed for binary tournaments in 

[19]. The main advantage of this constraint-handling 

scheme is in the lack of user-defined parameters, 

although it may also lead to premature convergence. 

In this work, we incorporated three feasibility rules 

into the FA in order to solve constrained 

optimization problems. The performance of the 

proposed firefly algorithm for constrained 

optimization, called CFA, has been tested on nine 

well-known benchmark functions taken from the 

literature and compared with GA, PSO and ABC. 

This paper is organized as follows. Section 2 

presents firefly algorithm. A detailed description of 

our approach is provided in Section 3. Section 4 

presents benchmark functions, test results and 

discussion. 

 

 

2 Firefly algorithm 
In order to develop firefly algorithm, some of the 
flashing characteristics of fireflies were idealized. 
Yang formulated this firefly algorithm by assuming 
three simplification rules [12]. 
 

1. All fireflies are unisex so that one firefly will be 

attracted at other fireflies regardless of their sex. 
 

2. Attractiveness is proportional to firefly 

brightness. For any couple of flashing fireflies, 

the less bright one will move towards the 

brighter one. The brightness decreases when the 

distance between fireflies is increased. The 

brightest firefly moves randomly, because there 

is no other bug to attract it. 
 

3. The brightness of a firefly is somehow related 

with the analytical form of the cost function. For 

a maximization problem, brightness can simply 

be proportional to the value of the cost function. 

Other forms of brightness can be defined in a 

similar way to the fitness function in genetic 

algorithms. 
 

Similarily to other metaheuristics optimization 

methods, firefly algorithm generates random initial 

population of feasible candidate solutions. All 

fireflies of the population are handled in the solution 

search space with the aim that knowledge is 

collectively shared among fireflies to guide the 

search to the best location in the search space. Each 

individual of the population is called a firefly. At 

each iterative step, the brightness and the 

attractiveness of each firefly is calculated. The 

brightness of each firefly is compared with all other 

fireflies and the positions of the fireflies are 

dynamically updated based on the knowledge of the 

firefly and its neighbors.  

According to above rules there are two main 
points in firefly algorithm, the attractiveness of the 
firefly and the movement towards the attractive 
firefly. 
 
 

2.1 The attractiveness of the firefly 
At the source, the brightness is higher than at some 

distant point. Also, the brightness decreases while 

environment absorbs the light while it is travelling. 

It can be concluded that the attractiveness of firefly 

  is relative. It is known that the light intensity 

)(rI  varies following the inverse square law:   
 

2

0)(
r

I
rI       (5) 

where 0I  represents the light intensity at the source.  

Suppose there are n fireflies and that ix  

corresponds to the solution for firefly i. The 

brightness of the firefly i, is associated  with the 

objective function )( ixf .  The brightness (the 

attractiveness) I of a firefly is chosen to reveal its 

recent position of its fitness value or objective 

function )(xf : 
 

)( ii xfI       (6) 
 

The less bright (attractive) firefly is attracted and 

moved to the brighter one and each firefly has a 

certain attractiveness value  β. However, the 
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attractiveness value  β is relative based on the 

distance between fireflies. The attractiveness 

function of the firefly is established by: 
 

2

0)( rer       (7) 
 

where 0  is the firefly attractiveness value at r = 0 

and   is the media light absorption coefficient.    

 

 

2.2 The movement towards attractive firefly 
Fireflies movement is based on the principles of 

attractiveness: when firefly j is more attractive than 

firefly  i the movement is determined by the 

following equation:   
 













2

1
)(

2

0 randxxexx ji

r

ii
ij 


 (8) 

 

In Eq. (8) third term is randomization term where  

]1,0[ , rand is random number between 0 and 1. 

Distance ijr  between fireflies i and j is obtained by 

Cartesian distance form by: 

 



D

k

kjkiij xxr

1

2
,,

    (9) 

 

Therefore, the algorithm compares the attractiveness 

of the firefly i  with the attractiveness of the firefly j. 

If the firefly j is more attractive than firefly  i , then 

the firefly i is moved to the new position; otherwise 

the firefly i will remain in the current position. The 

termination criterion of the FA is based on an 

arbitrary predefined number of iterations or 

predefined fitness value.  

 

 

3 Our proposed approach: CFA 
In order to solve constrained optimization problems, 

we incorporated the three simple selection criteria 

based on feasibility into the firefly algorithm to 

guide the search to the feasible region. This 

constraint-handling technique, originally proposed 

by Deb, uses a tournament selection operator, where 

two solutions are compared at a time, and the 

following rules are always enforced [19]:   
 

1. When comparing two feasible solutions, the one 

with the better objective function is chosen. 

 

2. When comparing a feasible and an infeasible 

solution, the feasible one is chosen. 

 

3. When comparing two infeasible solutions, the 

one with the lower sum of constraint violation is 

chosen. 
 

The sum of constraint violation for a solution x  is 

given by: 
 





m

qj

j

q

j

j xhxgxCV

11

)())(,0max()(             (10) 

 

 

In CFA, Deb’s rules are used instead of the 

greedy selection in order to decide what solution 

will be updated. Hence, the decision what firefly is 

more attractive is made according these feasibility 

rules. The CFA does not start with the feasible 

initial population, since initialization with feasible 

solutions is hard and in some cases impossible to 

achieve randomly. During running process of CFA, 

the feasibility rules direct the solutions to feasible 

region. 

As in the version of FA proposed to solve struc-

tural optimization problems [15], it was found that 

the solution quality can be improved by reducing the 

randomization parameter   with a geometric 

progression reduction scheme similar to the cooling 

schedule of simulated annealing which can be 

described by: 
 

t  0                 (11) 
 

where 10   is the reduction factor of 

randomization. In CFA, described reduction scheme 

was followed by reducing   from 0.5 to 0.0001. In 

our implementation we set parameter  , which 

characterizes the variation of attractiveness to the 

value 1. The initial value of attractiveness 10   

was utilized. The pseudo code for the CFA is: 
 

Objective function f(x),  T
Dxxx ),...,( 1  

Initialize a population of fireflies ix  (i = 1, 2, ..., n) 

randomly 

Initialize algorithm's parameters  , 0 ,   

while (t <MaxGeneration) 

for i = 1 : n  

for j = 1 : n  

if ( jx  is chosen according to Deb’s rules 

when we compare ix and jx  ) 

Obtain attractiveness which varies with 

distance r via exp[- r] 

Move firefly i towards j in all D dimensions 

Evaluate new solution  

end if 

       end for j 

end for i 

Reduce the randomization parameter  by (11) 

Find the current best solution 

end while 
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4 Experimental study 

To test the performance of our proposed approach 

CFA, we used 9 well-known benchmark problems 

which can be found in [2]. This set of 9 benchmark 

problems includes various forms of objective 

functions such as linear, nonlinear and quadratic. 

Type of objective function, the optimal solution, the 

number of linear equalities (LE), nonlinear 

equalities (NE), linear inequalities (LI), nonlinear 

inequalities (NI) and the number of optimization 

parameters (D) are given in Table 1. In Table 1,   

is an estimate of the ratio between the feasible 

region and the entire search space computed by 

SF /  where F  is the number of feasible 

solutions and S  is the total number of solutions 

randomly generated.  

Our proposed approach has been implemented in 

Java programming language. Tests were done on a 

PC with Intel® Core™ i3-2310M processor @2,10 

GHz with 2GB of RAM and Windows 7 x64 

Professional operating system. The performance of 

the CFA is compared with the performance of  

genetic algorithm (GA) [5], particle swarm 

optimization  (PSO) [6] and artificial bee colony 

(ABC) algorithm [2]. 

 

 
 

Function Optimal D Type of Fun.  (%) LI NI LE NE 

g01 -15.000 13 quadratic 0.0003 9 0 0 0 

g03 1.000 10 nonlinear 0.0026 0 0 0 1 

g06 -6961.814 2 nonlinear 0.0057 0 2 0 0 

g07 24.306 10 quadratic 0.0000 3 5 0 0 

g08 0.095825 2 nonlinear 0.8581 0 2 0 0 

g09 680.630 7 nonlinear 0.5199 0 4 0 0 

g11 0.75 2 quadratic 0.0973 0 0 0 1 

g12 1.000 3 quadratic 4.7697 0 9 0 0 

g13 0.053950 5 nonlinear 0.0000 0 0 1 2 
 

Table 1. Summary of main properties of the benchmark functions 

 

 

4.1  Parameter Settings 

In GA population size is 200, maximum number of 

generations is 1200, crossover rate is 0.8, mutation 

rate is 0.6 and the number of objective function 

evaluations is 240000. All equality constraints have 

been converted into inequality constraints, jh , 

with   varying dynamically. 

In PSO algorithm the swarm size is 50 and the 

generation number is 7000. Hence, PSO performs 

350000 objective function evaluations. Cognitive 

and social components are both set to 1, while 

inertia weight is uniform random real number in the 

range [0.5,1]. 

In ABC algorithm, the value of modification 

rate (MR) is 0.8, colony size (SN) is 40 and the 

maximum cycle number  is 6000. Therefore, ABC 

performs 240000 objective function evaluations. 

The value of limit and SPP is equal to SN*D*0.5,  

where D is the dimension of the problem and SN is 

the number of solutions in the population.  

In CFA population size is set to 35, maximum 

number of iterations is 3000 and therefore the 

number of objective function evaluations is 

105000. Each of the experiments was conducted 30 

times using different random seeds.  

In PSO, ABC and CFA all equality constraints 

have been converted into inequality constraints, 

,jh  with 001.0 . As in our proposed 

approach, Deb's rules are used for constraint 

handling in GA, PSO and ABC. 

 

 

4.2  Results and Discussion 

The statistical results of CFA when it was applied 

to 9 benchmark problems are presented in Table 2. 

From Table 1 it can be seen that our approach was 

able to find the global optimum in 6 out of 9 

benchmarks (g01, g03, g08, g09, g11, g12) and it 

found solutions very close to the global optimum in 

the remaining test functions, with the exception of 

g13. 

Comparative results of the best and mean 

solutions of the GA, PSO, ABC and our proposed 

algorithm are presented in Table 3 and Table 4. 
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F. Best Mean Worst S.D. 

g01 -15.000 -14.563 -12.453 0.881 

g03 1.005 1.005 1.005 0.000 

g06 -6961.813 -6961.812 -6961.809 0.001 

g07 24.308 24.315 24.328 0.005 

g08 0.095825 0.095825 0.095825 0.000 

g09 680.630 680.631 680.632 0.000 

g11 0.749 0.749 0.749 0.000 

g12 1.000 1.000 1.000 0.000 

g13 0.177 0.455 1.263 0.216 
 

Table 2. Statistical results obtained by CFA for 9 

test functions over 30 independent runs 
 

 

 

Table 3. The best solutions obtained by GA, PSO, 

ABC and CFA for 9 test functions over 30 

independent runs 
 

 

 

Table 4. The mean solutions obtained by GA, PSO, 

ABC and CFA for 9 test functions over 30 

independent runs (- means that no feasible 

solutions were found) 

 

If we compare the performance of CFA with the 

performance of GA algorithm we can see that CFA 

performs better, since it reached better best and 

mean results for 8 out of 9 benchmark problems.  

When comparing our approach with respect to PSO 

algorithm, we can see that CFA found a better best 

solution for 2 benchmarks (g03 and g07) and a 

worse best result for 2 test functions (g06 and g13). 

From the mean results, CFA outperforms PSO on 4 

benchmarks (g03, g07, g12, g13) and performs 

worse on 3 problems (g01, g06, g09). We can 

conclude that CFA and PSO show similar 

performances according to the best and mean 

results. 

Compared with ABC, our approach found a 

better best results for 3 benchmarks (g07, g09, g13) 

and similar best result for the remaining 

benchmarks, with the exception of g06 and g11 

where CFA performs slightly worse. From the 

mean results, CFA shows a better performance on 3 

problems (g07, g09, g13) and also a worse 

performance on 3 problems (g01, g06, g11). 

According to the best and mean results we can 

conclude that CFA and ABC show similar 

performances. 

 

5 Conclusion 
In this paper, firefly algorithm for constrained 

problems (CFA) is presented. The basic firefly 

algorithm was first developed to solve 

unconstrained optimization problems and showed 

that it has superior performance over GA and PSO. 

Our approach incorporates constraint handling 

technique based on three feasibility rules into the 

basic firefly algorithm in order to prefer feasible 

solutions to infeasible ones. CFA has been tested 

on nine well-known benchmark functions. 

Comparisons show that CFA outperforms or 

performs similarly to three other state-of-the-art 

algorithms such as GA, PSO and ABC.  

Future work will include investigation to a more 

detailed performance analysis of CFA. Also, the 

effect of constraint handling methods on the 

performance of firefly algorithm can be considered. 
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