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Abstract: - In this work, firefly algorithm (FA) is used in training feed-forward neural networks (FNN) for 

classification purpose. In experiments, three well-known classification problems have been used to evaluate the 

performance of the proposed FA. The experimental results obtained by FA were compared with the results 

reported by artificial bee colony (ABC) algorithm and genetic algorithm (GA). Also, since the choice of 

transfer functions may strongly influence the performance of neural networks, the FA results obtained by using 

traditional sigmoid transfer function and by using sine transfer function were compared.  
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1 Introduction 
1Artificial Neural Network (ANN) consists of an 

interconnected group of simple processing elements 

(artificial neurons) with internal adjustable 

parameters (weights). These networks can learn an 

arbitrary vector mapping from the space of input to 

the space of output by modification of these 

adjustable parameters. There are different ways in 

which information can be processed by a neuron, 

and different ways of connecting the neurons to one 

another. A variety of neural network structures have 

been proposed for signal processing, pattern 

recognition, control, etc. One of the major emphasis 

in neural network research is on learning algorithms 

and architectures. Finding a suitable network 

structure and finding optimal weight values make 

design of artificial neural networks difficult 

optimization problems. 

A feed-forward neural network (FNN) is 

an artificial neural network where connections 

between the nodes do not form a directed cycle. 

These artificial networks have a number of 

properties which make them particularly suited to 

complex pattern classification problems. On the 

other side, the success of their application to some 

real world problems depends on a training 

algorithm. They need a training algorithm which 

reliably finds a nearly globally optimal set of 

weights in a relatively short time. Traditional 

algorithm for training FNN, called backpropagation, 
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can often find a good set of weights in a reasonable 

amount of time [1]. Backpropagation is a variation 

of gradient search and the key to backpropagation is 

a method for calculating the gradient of the error 

with respect to the weights for a given input by 

propagating error backwards through the network. 

However, there are some drawbacks to 

backpropagation such as getting stuck in local 

minima and computational complexity [1]. 

Many global optimization methods have been 

proposed for training FNN in order to overcome the 

disadvantages of gradient based algorithms. 

Specially, some nature inspired metaheuristics such 

as genetic algorithm (GA), inspired by Darwin's 

theory about evolution, particle swarm optimization 

(PSO) algorithm, inspired by the social behavior of 

birds or fishes and artificial bee colony (ABC) 

algorithm, based on honey bee foraging behavior, 

have been successfully applied for training FNN [2], 

[3], [4], [5], [6].  

The Firefly algorithm (FA) is a novel swarm 

intelligence metaheuristic based on the idealized 

behaviour of the flashing characteristics of fireflies 

[8], [10]. In this paper, its application to the training 

of FNN is investigated. Considering the fact that the 

choice of transfer functions may strongly influence 

the performance of neural networks [7], [9], [11], 

the FA results are produced by using sigmoid 

transfer function, as a traditional transfer function, 

and by using sine transfer function, as a less used 

transfer function. The FA results obtained by using 

sigmoid transfer function are compared with the 

results reported by artificial bee colony (ABC) and 

genetic algorithms (GA) [5], which are also 
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obtained by using sigmoid transfer function for the 

same benchmarks.  Also, in order to investigate the 

impact of the transfer function on the performance 

of firefly learning algorithm, and hence on FNN 

performance, the FA results provided by sigmoid 

and by sine transfer functions are compared.  This 

paper is organized as follows. In Section 2, training 

FNN is described. Section 3 presents firefly 

algorithm. Benchmark problems considered in this 

work are described in Section 4. In Section 5, 

experiments and results are presented. Our 

conclusions are provided in Section 6. 

 

2 Training Feed-Forward Artificial 

Neural Networks 
The basic FNN produces its output by transforming 

input data, and consists of an input layer, one or 

more hidden layers, and an output layer. Each layer 

contains nodes or neurons. Interconnections within 

the network are such that neurons in layer i are 

connected to neurons in layer i+1, that is, each 

neuron in layer i is connected to every neuron in the 

adjacent layer i+1. Each interconnection has a scalar 

weight associated with it that is adjusted during the 
training phase. Fig.1 shows three layered feed-

forward networks with one hidden layer. 
 
 

 
 

Fig.1 Typical structure of a feed-forward artificial 

neural network 
 

In FNN, the information moves in only one 

direction, forward, from the input nodes, through the 

hidden nodes (if any) and to the output 

nodes. Output of the i
th
 neuron can be described by: 
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where iy   is the output of the node, jx  is the j
th 

input to the node, ijw  is the connection weight 

between the node and input jx , i  is the threshold 

(or bias) of the node, and if  is the node transfer 

function. Bias terms can be interpreted as additional 

weights. 

The transfer function is often the same for all the 

nodes in a FNN. The node transfer function is 

usually a nonlinear function such as a sigmoid 

function, although there is no a priori reason why 

models based on this function should always 

provide optimal decision borders [7].  

When utilizing evolutionary algorithms to train 

FNN, the neural network is trained by minimizing 

an error function. The error function used in our 

experiments is the Mean Squared Error (MSE), 

which can be calculated according to Eq.(2): 
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where p denotes the number of training patterns, m 

the number of FNN outputs, ijT the target, ijF  the 

actual value, both for the output j and the i input 

pattern.  In nature inspired algorithms (NIA), the 

main idea is that each solution in the population 

represents a vector of connection weights of the 

FNN. Appropriate NIA operators are used to change 

the weights and the error produced by the FNNs is 

used as the fitness measure which guides selection. 

 

3 Firefly algorithm 
Flashing characteristics of fireflies can be 

summarized by the following three rules [8]:  

1. All fireflies are unisex so that one firefly will be 

attracted to other fireflies regardless of their sex. 

2. Attractiveness is proportional to firefly 

brightness. For any couple of flashing fireflies, 

the less bright one will move towards the 

brighter one. The brightness decreases when the 

distance between fireflies is increased. The 

brightest firefly moves randomly, because there 

is no other bug to attract it. 

3. The brightness of a firefly is affected or 

determined by the landscape of the objective 

function to be optimized. 
 

The attractiveness function of the firefly is 

established by: 
 

2

0)( rer       (3) 
 

where 0  is the firefly attractiveness value at r = 0 

and   is the media light absorption coefficient.    

Fireflies movement is based on the principles of 

attractiveness: when firefly j is more attractive than 

firefly i the movement is determined by the 

following equation: 
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where Dk ,...,2,1 (D is dimension of problem). In 

Eq. (4) third term is randomization term where 

]1,0[ , kS  are the scaling parameters and 

ikrand
 
is random number between 0 and 1. The 

solution quality can be improved by reducing the 

randomization parameter   with a geometric 

progression reduction scheme. In our proposed 

approach this reduction scheme can be described by:  
 

tt 9.0)( 0     (5) 
 
 

where t is the current number of iteration. In 

addition, the scaling parameters kS
 

in all D 

dimensions are determined by: 
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where kl  and ku  are the lower and upper bound of 

the parameter ikx . 

Distance ijr  between fireflies i and j is obtained by 

Cartesian distance form by: 
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The pseudo code of the firefly algorithm is given 

below: 
Input 

Objective function f(x),
T

Dxxx ),...,( 1  {cost 

function} 

S=[ kl , ku ]; k = 1, 2,..., D {given constraints} 

 ,, 00  {algorithm's parameters} 

Output 

minx  {obtained minimum location} 

Begin 

Initialize a population of fireflies ix  (i = 1, 2, ..., n) 

randomly 

Initialize algorithm's parameters  , 0 ,   
while (t <MaxGeneration) 

for i = 1 : n  

for j = 1 : i  

   if  ( ))()(( ij xfxf  ) 

   Obtain attractiveness by Eq.(3) 
Move firefly i towards j in all D dimensions 

by Eq.(4) 
 

Evaluate and update the new solution  

end if 

       end for j 

end for i 
 

Reduce the randomization parameter  by Eq.(5) 
 

Rank the fireflies and find the current best 

end while 
 

 

 

4 Benchmark problems 
To evaluate the performance of firefly algorithm in 

feed-forward neural network training and to also 

carry out a comparison with state-of-the-art 

algorithms for training artificial neural networks 

three standard benchmark problems are used. These 

problems are listed below: 
 

Exclusive-OR (XOR) Boolean function is the 

first problem used in the experiments. This problem 

is a classification problem mapping two binary 

inputs to a single binary output. Input and output 

patterns for test problem XOR are: (0 0; 0 1; 1 0; 1 

1)    (0; 1 ;1; 0). 

In the experiments, three feed-forward neural 

network structures were used: a 2-2-1 feed-forward 

neural network with six connection weights and no 

biases (having six parameters, XOR6),  2-2-1 feed-

forward neural network with six connection weights 

and three biases (having 9 parameters, XOR9),  2-3-

1 feed-forward neural network with nine connection 

weights and four biases totally thirteen parameters 

(XOR13).  

Three bit parity problem is the second problem 

considered in the experiments. The N-bit parity 

function is a mapping defined on  distinct binary 

vectors that indicates whether the sum of the N 

components of a binary vector is odd or even, i.e. if 

the number of binary inputs is odd, the output is 1, 

otherwise it is 0. The 3-Bit Parity Problem is a 

special case of N-Bit Parity Problem for N = 3, as 

well as XOR problem is a special case of N-Bit 

Parity Problem for N = 2. Input and output patterns 

for 3-Bit Parity test problem are: (0 0 0; 0 0 1; 0 1 0; 

0 1 1; 1 0 0; 1 0 1; 1 1 0; 1 1 1)   (0; 1 ;1; 0; 1; 0; 

0; 1). 

The XOR/parity problem has a long history in 

the study of neural networks [12]. A 3-3-1 feed-

forward neural network structure is used for the 3-

Bit Parity problem and it has twelve connection 

weights and four biases, totally sixteen parameters.  
 

4-Bit Encoder/Decoder Problem is the third 

problem used in the experiments. This problem has 

4 distinct input patterns, each having only one bit 

turned on. The output is a duplication of the inputs 
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Input and output patterns for this test problem are: 

(0 0 0 1; 0 0 1 0; 0 1 0 0; 1 0 0 0)   (0 0 0 1; 0 0 1 

0; 0 1 0 0; 1 0 0 0).  A 4-2-4 feed-forward neural 

network structure is used for this problem and it has 

totally 22 parameters including sixteen connection 

weights and six biases.  

The parameter ranges, dimension of the 

problems, and the network structures used in these 

experiments are the same as in [5] and the values are 

presented in Table 1. 
 

Problem Range NN structure D 

XOR6 [-100,100] 2-2-1 with bias 6 

XOR9 [-10,10] 2-2-1 with bias 9 

XOR13 [-10,10] 2-3-1 with bias 13 

3-Bit Parity [-10,10] 3-3-1 with bias 16 

4-Bit Enc.- 

Dec. 
[-10,10] 4-2-4 with bias 22 

 

Table1. Parameters of the problems considered in 

the experiments. D: Dimension of the problem. 

 

 

5 Experimental study 
The firefly training algorithm has been implemented 

in Java programming language. Tests were done on 

a PC with Intel® Core™ i3-2310M processor 

@2.10 GHz with 2GB of RAM and Windows 7x64 

Professional operating system. In the experiments, 

for each benchmark problem, the results obtained by 

FA using sigmoid transfer function and by FA using 

sine transfer function are generated and recorded. 

For each benchmark problem  experiments were 

repeated 30 times and training processes were 

stopped when the mean squared error of the outputs 

associated with inputs was equal to or less than 0.01 

(MSE≤0.01) or when the maximum cycle number 

has been reached.  

 

5.1 Parameter settings 

The parameter values utilized by FA in all the 

experiments are the following: size of population SP 

is 50, the value of parameter  is 1, the initial value 

of attractiveness   is 1, the initial value of 

parameter  is 0.9, i.e. the reduction scheme 

described by Eq.(5) was followed by reducing  

from 0.9. 

The parameter values utilized by ABC in all the 

experiments are the following: the value of “limit” 

is equal to SN x D where D is the dimension of the 

problem, colony size is 50 for all problems [5]. 

The parameter values utilized by GA in all the 

experiments are the following: single point 

crossover with the rate of 0.8, uniform mutation 

with the rate of 0.05 are employed. Generation gap 

is set to 0.9. The population size in GA is 50 for all 

problems [5]. 

As in [5] maximum cycle number (MCN) for ABC, 

GA and FA were 7500,100,75,1000 1000 for 

XOR6, XOR9, XOR13, 3-Bit Parity and 4-Bit 

Encoder-Decoder problems, respectively. Hence, the 

total objective function evaluation numbers were 

375 000, 5000, 3750, 50000 and 50000 for the 

problems, respectively. 

 

5.2 Results and Discussion 
Comparative results of the GA, ABC and FA 

produced by using sigmoid transfer function are 

given in Table 2. 

 When comparing FA with respect to GA, we 

can see that both algorithms show similar 

performances for problems XOR6 and 4-bit 

encoder/decoder problem. For the remaining three 

benchmark problems FA obtained better results, 

specially for problems XOR9 and XOR13. For 

problems XOR9 and XOR13, FA has 100% success, 

while the GA has 40% and 77% success 

respectively. Also, from the mean and standard 

deviations of cycle numbers it can be seen that FA 

converges significantly faster than GA. 

When comparing FA with respect to ABC, we 

can see that FA performs worse on problems XOR6, 

4-bit encoder/decoder and 3-Bit Parity problem. For 

these problems, FA shows tendency to be trapped in 

the local minima, while ABC has 100% success. For 

problems XOR9 and XOR13, both algorithms have 

100% success, but from the mean and standard 

deviations of mean squared errors, as well as from 

the mean and standard deviations of cycle numbers, 

it can be seen that FA performs better. FA 

converges about three times faster to the global 

minima than ABC on these two problems. 

Comparative FA results produced by using 

sigmoid transfer function and produced by using 

sine transfer function are summarized in Table 3.  

As observed in Table 3, the FA results produced 

by using sine transfer function are much better that 

the FA results obtained by using sigmoid transfer 

function for XOR6 and 3-Bit Parity problems. For 

these problems, for sine transfer function, FA has 

100% success and converges very fast to the global 

minima. On the other side, for problem XOR6, for 

sigmoid transfer function, FA could not reach the 

global minima in any run. For Encoder-Decoder 

problem, XOR9, and XOR13, FA results produced 

by using sine transfer function are similar with the 

FA results produced by using sigmoid transfer 

function. 
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Algorithm Statistics XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec. 

GA 

MMSE 0.099375 0.047968 0.015200 0.028725 0.016400 

SDME 0.02785 0.052000 0.022850 0.032900 0.031300 

MC 7500 77.067 38.6000 501.1333 400.1333 

SDC 0 33.394 25.0236 415.8687 340.4838 

Success 

Rate 

0 40 76.6667 63.3333 86.6667 

ABC 

MMSE 0.007051  0.006956 0.006079 0.006679 0.008191 

SDME 0.002305  0.002402  0.003182  0.002820  0.001864 

MC 2717.4 32 28.2 179.066666 185 

SDC 3.359377 0.182827 1.241569 12.792384 5.842378 

Success 

Rate 
100 100 100 100 100 

FA 

MMSE 0.078939 0.004971 0.003660 0.015399 0.017473 

SDME 0.018168 0.002677 0.002417 0.023297 0.022646 

MC 7500 9.3 7.866667 181.633333 216.033333 

SDC 0 3.089229 3.063041 366.053137 391.988646 

Success 

Rate 

0 100 100 83.333333 80 

 

Table2.  Experimental Results of 30 runs of FNN training process produced by GA, ABC and FA using 

sigmoid transfer function. MMSE: Mean of Mean Squared Errors, SDMSE: Standard Deviation of Mean 

Squared Errors, MC: Mean of Cycle Numbers, SDC: Standard Deviation of Cycle Numbers. 

 

 

Transfer 

function 
Statistics XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec. 

Sigmoid 

MMSE 0.078939 0.004971 0.003660 0.015399 0.017473 

SDME 0.018168 0.002677 0.002417 0.023297 0.022646 

MC 7500 9.3 7.866667 181.633333 216.033333 

SDC 0 3.089229 3.063041 366.053137 391.988646 

Success 

Rate 

0 100 100 83.333333 80 

Sine 

MMSE 0.002308 0.005418 0.005922 0.006472 0.015747 

SDME 0.001884 0.002289 0.002520 0.002307 0.019705 

MC 1.066667 3.366667 5.1 35.766667 217.266667 

SDC 0.249443 2.651834 4.019536 8.389213 391.372791 

Success 

Rate 
100 100 100 100 80 

 

Table3.Experimental Results of 30 runs of FNN training process produced by FA using sigmoid transfer 

function and FA using sine transfer function. MMSE: Mean of Mean Squared Errors, SDMSE: Standard 

Deviation of Mean Squared Errors, MC: Mean of Cycle Numbers, SDC: Standard Deviation of Cycle Numbers. 

 

 

 

 Conclusion 

In this paper, the firefly algorithm is applied to 

train feed-forward artificial neural networks. Three 

well known classification problems are considered 

in this work. In the experiments, for each 

benchmark problem, the FA results are produced 

by using sigmoid transfer function and by using 

sine transfer function. The FA results obtained by 

using sigmoid transfer function are compared with 

the results reported by artificial bee colony (ABC) 

and genetic algorithms (GA), which are also 
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obtained for these benchmark problems by using 

sigmoid transfer function. According to these 

experimental results it can be concluded that FA 

performs better than GA algorithm, but worse than 

ABC algorithm for the majority of benchmark 

problems. Although for sigmoid transfer function 

firefly learning algorithm shows tendency to be 

trapped in the local minima, it has fast convergence 

speed for several benchmarks. 

Further, in order to investigate the impact of the 

transfer function on the performance of firefly 

learning algorithm, and hence on FNN 

performance, the FA results provided by sigmoid 

and by sine transfer functions are compared. These 

experimental results show that for sine transfer 

function the tendency of firefly learning algorithm 

to be trapped in the local minima is significantly 

reduced. In this case FA has 100% success and a 

very fast convergence speed for almost all 

benchmarks. 

Considering the experimental results, the 

possibility of simultaneously evolving weights and 

transfer functions may be the part of our future 

work. Also, the possible modifications in the search 

strategy of FA in order to provide better 

balance of exploration and exploitation will be 

investigated. 
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