
Training Feed-Forward Neural Networks Using Firefly Algorithm

Ivona BRAJEVIC, Milan TUBA

Faculty of Computer Science

University Megatrend Belgrade

Bulevar umetnosti 29, N. Belgrade

SERBIA

ivona.brajevic@googlemail.com, tuba@ieee.org

Abstract: - In this work, firefly algorithm (FA) is used in training feed-forward neural networks (FNN) for

classification purpose. In experiments, three well-known classification problems have been used to evaluate the

performance of the proposed FA. The experimental results obtained by FA were compared with the results

reported by artificial bee colony (ABC) algorithm and genetic algorithm (GA). Also, since the choice of

transfer functions may strongly influence the performance of neural networks, the FA results obtained by using

traditional sigmoid transfer function and by using sine transfer function were compared.

Key-Words: - Swarm intelligence, Firefly algorithm, Feed-Forward Neural Networks

1 Introduction
1Artificial Neural Network (ANN) consists of an

interconnected group of simple processing elements

(artificial neurons) with internal adjustable

parameters (weights). These networks can learn an

arbitrary vector mapping from the space of input to

the space of output by modification of these

adjustable parameters. There are different ways in

which information can be processed by a neuron,

and different ways of connecting the neurons to one

another. A variety of neural network structures have

been proposed for signal processing, pattern

recognition, control, etc. One of the major emphasis

in neural network research is on learning algorithms

and architectures. Finding a suitable network

structure and finding optimal weight values make

design of artificial neural networks difficult

optimization problems.

A feed-forward neural network (FNN) is

an artificial neural network where connections

between the nodes do not form a directed cycle.

These artificial networks have a number of

properties which make them particularly suited to

complex pattern classification problems. On the

other side, the success of their application to some

real world problems depends on a training

algorithm. They need a training algorithm which

reliably finds a nearly globally optimal set of

weights in a relatively short time. Traditional

algorithm for training FNN, called backpropagation,

This research is supported by Ministry of Science, Republic

of Serbia, Project No. 44006

can often find a good set of weights in a reasonable

amount of time [1]. Backpropagation is a variation

of gradient search and the key to backpropagation is

a method for calculating the gradient of the error

with respect to the weights for a given input by

propagating error backwards through the network.

However, there are some drawbacks to

backpropagation such as getting stuck in local

minima and computational complexity [1].

Many global optimization methods have been

proposed for training FNN in order to overcome the

disadvantages of gradient based algorithms.

Specially, some nature inspired metaheuristics such

as genetic algorithm (GA), inspired by Darwin's

theory about evolution, particle swarm optimization

(PSO) algorithm, inspired by the social behavior of

birds or fishes and artificial bee colony (ABC)

algorithm, based on honey bee foraging behavior,

have been successfully applied for training FNN [2],

[3], [4], [5], [6].

The Firefly algorithm (FA) is a novel swarm

intelligence metaheuristic based on the idealized

behaviour of the flashing characteristics of fireflies

[8], [10]. In this paper, its application to the training

of FNN is investigated. Considering the fact that the

choice of transfer functions may strongly influence

the performance of neural networks [7], [9], [11],

the FA results are produced by using sigmoid

transfer function, as a traditional transfer function,

and by using sine transfer function, as a less used

transfer function. The FA results obtained by using

sigmoid transfer function are compared with the

results reported by artificial bee colony (ABC) and

genetic algorithms (GA) [5], which are also

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 156

obtained by using sigmoid transfer function for the

same benchmarks. Also, in order to investigate the

impact of the transfer function on the performance

of firefly learning algorithm, and hence on FNN

performance, the FA results provided by sigmoid

and by sine transfer functions are compared. This

paper is organized as follows. In Section 2, training

FNN is described. Section 3 presents firefly

algorithm. Benchmark problems considered in this

work are described in Section 4. In Section 5,

experiments and results are presented. Our

conclusions are provided in Section 6.

2 Training Feed-Forward Artificial

Neural Networks
The basic FNN produces its output by transforming

input data, and consists of an input layer, one or

more hidden layers, and an output layer. Each layer

contains nodes or neurons. Interconnections within

the network are such that neurons in layer i are

connected to neurons in layer i+1, that is, each

neuron in layer i is connected to every neuron in the

adjacent layer i+1. Each interconnection has a scalar

weight associated with it that is adjusted during the
training phase. Fig.1 shows three layered feed-

forward networks with one hidden layer.

Fig.1 Typical structure of a feed-forward artificial

neural network

In FNN, the information moves in only one

direction, forward, from the input nodes, through the

hidden nodes (if any) and to the output

nodes. Output of the i
th
 neuron can be described by:

)(

1

n

j

ijijii xwfy

 (1)

where iy is the output of the node, jx is the j
th

input to the node, ijw is the connection weight

between the node and input jx , i is the threshold

(or bias) of the node, and if is the node transfer

function. Bias terms can be interpreted as additional

weights.

The transfer function is often the same for all the

nodes in a FNN. The node transfer function is

usually a nonlinear function such as a sigmoid

function, although there is no a priori reason why

models based on this function should always

provide optimal decision borders [7].

When utilizing evolutionary algorithms to train

FNN, the neural network is trained by minimizing

an error function. The error function used in our

experiments is the Mean Squared Error (MSE),

which can be calculated according to Eq.(2):

2

1 1

)(
1

)(

p

i

ijij

m

j

ij FT
pm

wMSE

 (2)

where p denotes the number of training patterns, m

the number of FNN outputs, ijT the target, ijF the

actual value, both for the output j and the i input

pattern. In nature inspired algorithms (NIA), the

main idea is that each solution in the population

represents a vector of connection weights of the

FNN. Appropriate NIA operators are used to change

the weights and the error produced by the FNNs is

used as the fitness measure which guides selection.

3 Firefly algorithm
Flashing characteristics of fireflies can be

summarized by the following three rules [8]:

1. All fireflies are unisex so that one firefly will be

attracted to other fireflies regardless of their sex.

2. Attractiveness is proportional to firefly

brightness. For any couple of flashing fireflies,

the less bright one will move towards the

brighter one. The brightness decreases when the

distance between fireflies is increased. The

brightest firefly moves randomly, because there

is no other bug to attract it.

3. The brightness of a firefly is affected or

determined by the landscape of the objective

function to be optimized.

The attractiveness function of the firefly is

established by:

2

0)(rer (3)

where 0 is the firefly attractiveness value at r = 0

and is the media light absorption coefficient.

Fireflies movement is based on the principles of

attractiveness: when firefly j is more attractive than

firefly i the movement is determined by the

following equation:

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 157

2

1

)(
2

0

ikk

jkik
ijr

ikik

randS

xxexx

 (4)

where Dk ,...,2,1 (D is dimension of problem). In

Eq. (4) third term is randomization term where

]1,0[, kS are the scaling parameters and

ikrand

is random number between 0 and 1. The

solution quality can be improved by reducing the

randomization parameter with a geometric

progression reduction scheme. In our proposed

approach this reduction scheme can be described by:

tt 9.0)(0 (5)

where t is the current number of iteration. In

addition, the scaling parameters kS

in all D

dimensions are determined by:

kkk luS (6)

where kl and ku are the lower and upper bound of

the parameter ikx .

Distance ijr between fireflies i and j is obtained by

Cartesian distance form by:

D

k
kjkiij xxr

1

2
,, (7)

The pseudo code of the firefly algorithm is given

below:
Input

Objective function f(x),
T

Dxxx),...,(1 {cost

function}

S=[kl , ku]; k = 1, 2,..., D {given constraints}

 ,, 00 {algorithm's parameters}

Output

minx {obtained minimum location}

Begin

Initialize a population of fireflies ix (i = 1, 2, ..., n)

randomly

Initialize algorithm's parameters , 0 ,
while (t <MaxGeneration)

for i = 1 : n

for j = 1 : i

 if ())()((ij xfxf)

 Obtain attractiveness by Eq.(3)
Move firefly i towards j in all D dimensions

by Eq.(4)

Evaluate and update the new solution

end if

 end for j

end for i

Reduce the randomization parameter by Eq.(5)

Rank the fireflies and find the current best

end while

4 Benchmark problems
To evaluate the performance of firefly algorithm in

feed-forward neural network training and to also

carry out a comparison with state-of-the-art

algorithms for training artificial neural networks

three standard benchmark problems are used. These

problems are listed below:

Exclusive-OR (XOR) Boolean function is the

first problem used in the experiments. This problem

is a classification problem mapping two binary

inputs to a single binary output. Input and output

patterns for test problem XOR are: (0 0; 0 1; 1 0; 1

1) (0; 1 ;1; 0).

In the experiments, three feed-forward neural

network structures were used: a 2-2-1 feed-forward

neural network with six connection weights and no

biases (having six parameters, XOR6), 2-2-1 feed-

forward neural network with six connection weights

and three biases (having 9 parameters, XOR9), 2-3-

1 feed-forward neural network with nine connection

weights and four biases totally thirteen parameters

(XOR13).

Three bit parity problem is the second problem

considered in the experiments. The N-bit parity

function is a mapping defined on distinct binary

vectors that indicates whether the sum of the N

components of a binary vector is odd or even, i.e. if

the number of binary inputs is odd, the output is 1,

otherwise it is 0. The 3-Bit Parity Problem is a

special case of N-Bit Parity Problem for N = 3, as

well as XOR problem is a special case of N-Bit

Parity Problem for N = 2. Input and output patterns

for 3-Bit Parity test problem are: (0 0 0; 0 0 1; 0 1 0;

0 1 1; 1 0 0; 1 0 1; 1 1 0; 1 1 1) (0; 1 ;1; 0; 1; 0;

0; 1).

The XOR/parity problem has a long history in

the study of neural networks [12]. A 3-3-1 feed-

forward neural network structure is used for the 3-

Bit Parity problem and it has twelve connection

weights and four biases, totally sixteen parameters.

4-Bit Encoder/Decoder Problem is the third

problem used in the experiments. This problem has

4 distinct input patterns, each having only one bit

turned on. The output is a duplication of the inputs

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 158

Input and output patterns for this test problem are:

(0 0 0 1; 0 0 1 0; 0 1 0 0; 1 0 0 0) (0 0 0 1; 0 0 1

0; 0 1 0 0; 1 0 0 0). A 4-2-4 feed-forward neural

network structure is used for this problem and it has

totally 22 parameters including sixteen connection

weights and six biases.

The parameter ranges, dimension of the

problems, and the network structures used in these

experiments are the same as in [5] and the values are

presented in Table 1.

Problem Range NN structure D

XOR6 [-100,100] 2-2-1 with bias 6

XOR9 [-10,10] 2-2-1 with bias 9

XOR13 [-10,10] 2-3-1 with bias 13

3-Bit Parity [-10,10] 3-3-1 with bias 16

4-Bit Enc.-

Dec.
[-10,10] 4-2-4 with bias 22

Table1. Parameters of the problems considered in

the experiments. D: Dimension of the problem.

5 Experimental study
The firefly training algorithm has been implemented

in Java programming language. Tests were done on

a PC with Intel® Core™ i3-2310M processor

@2.10 GHz with 2GB of RAM and Windows 7x64

Professional operating system. In the experiments,

for each benchmark problem, the results obtained by

FA using sigmoid transfer function and by FA using

sine transfer function are generated and recorded.

For each benchmark problem experiments were

repeated 30 times and training processes were

stopped when the mean squared error of the outputs

associated with inputs was equal to or less than 0.01

(MSE≤0.01) or when the maximum cycle number

has been reached.

5.1 Parameter settings

The parameter values utilized by FA in all the

experiments are the following: size of population SP

is 50, the value of parameter is 1, the initial value

of attractiveness is 1, the initial value of

parameter is 0.9, i.e. the reduction scheme

described by Eq.(5) was followed by reducing

from 0.9.

The parameter values utilized by ABC in all the

experiments are the following: the value of “limit”

is equal to SN x D where D is the dimension of the

problem, colony size is 50 for all problems [5].

The parameter values utilized by GA in all the

experiments are the following: single point

crossover with the rate of 0.8, uniform mutation

with the rate of 0.05 are employed. Generation gap

is set to 0.9. The population size in GA is 50 for all

problems [5].

As in [5] maximum cycle number (MCN) for ABC,

GA and FA were 7500,100,75,1000 1000 for

XOR6, XOR9, XOR13, 3-Bit Parity and 4-Bit

Encoder-Decoder problems, respectively. Hence, the

total objective function evaluation numbers were

375 000, 5000, 3750, 50000 and 50000 for the

problems, respectively.

5.2 Results and Discussion
Comparative results of the GA, ABC and FA

produced by using sigmoid transfer function are

given in Table 2.

 When comparing FA with respect to GA, we

can see that both algorithms show similar

performances for problems XOR6 and 4-bit

encoder/decoder problem. For the remaining three

benchmark problems FA obtained better results,

specially for problems XOR9 and XOR13. For

problems XOR9 and XOR13, FA has 100% success,

while the GA has 40% and 77% success

respectively. Also, from the mean and standard

deviations of cycle numbers it can be seen that FA

converges significantly faster than GA.

When comparing FA with respect to ABC, we

can see that FA performs worse on problems XOR6,

4-bit encoder/decoder and 3-Bit Parity problem. For

these problems, FA shows tendency to be trapped in

the local minima, while ABC has 100% success. For

problems XOR9 and XOR13, both algorithms have

100% success, but from the mean and standard

deviations of mean squared errors, as well as from

the mean and standard deviations of cycle numbers,

it can be seen that FA performs better. FA

converges about three times faster to the global

minima than ABC on these two problems.

Comparative FA results produced by using

sigmoid transfer function and produced by using

sine transfer function are summarized in Table 3.

As observed in Table 3, the FA results produced

by using sine transfer function are much better that

the FA results obtained by using sigmoid transfer

function for XOR6 and 3-Bit Parity problems. For

these problems, for sine transfer function, FA has

100% success and converges very fast to the global

minima. On the other side, for problem XOR6, for

sigmoid transfer function, FA could not reach the

global minima in any run. For Encoder-Decoder

problem, XOR9, and XOR13, FA results produced

by using sine transfer function are similar with the

FA results produced by using sigmoid transfer

function.

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 159

Algorithm Statistics XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec.

GA

MMSE 0.099375 0.047968 0.015200 0.028725 0.016400

SDME 0.02785 0.052000 0.022850 0.032900 0.031300

MC 7500 77.067 38.6000 501.1333 400.1333

SDC 0 33.394 25.0236 415.8687 340.4838

Success

Rate

0 40 76.6667 63.3333 86.6667

ABC

MMSE 0.007051 0.006956 0.006079 0.006679 0.008191

SDME 0.002305 0.002402 0.003182 0.002820 0.001864

MC 2717.4 32 28.2 179.066666 185

SDC 3.359377 0.182827 1.241569 12.792384 5.842378

Success

Rate
100 100 100 100 100

FA

MMSE 0.078939 0.004971 0.003660 0.015399 0.017473

SDME 0.018168 0.002677 0.002417 0.023297 0.022646

MC 7500 9.3 7.866667 181.633333 216.033333

SDC 0 3.089229 3.063041 366.053137 391.988646

Success

Rate

0 100 100 83.333333 80

Table2. Experimental Results of 30 runs of FNN training process produced by GA, ABC and FA using

sigmoid transfer function. MMSE: Mean of Mean Squared Errors, SDMSE: Standard Deviation of Mean

Squared Errors, MC: Mean of Cycle Numbers, SDC: Standard Deviation of Cycle Numbers.

Transfer

function
Statistics XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec.

Sigmoid

MMSE 0.078939 0.004971 0.003660 0.015399 0.017473

SDME 0.018168 0.002677 0.002417 0.023297 0.022646

MC 7500 9.3 7.866667 181.633333 216.033333

SDC 0 3.089229 3.063041 366.053137 391.988646

Success

Rate

0 100 100 83.333333 80

Sine

MMSE 0.002308 0.005418 0.005922 0.006472 0.015747

SDME 0.001884 0.002289 0.002520 0.002307 0.019705

MC 1.066667 3.366667 5.1 35.766667 217.266667

SDC 0.249443 2.651834 4.019536 8.389213 391.372791

Success

Rate
100 100 100 100 80

Table3.Experimental Results of 30 runs of FNN training process produced by FA using sigmoid transfer

function and FA using sine transfer function. MMSE: Mean of Mean Squared Errors, SDMSE: Standard

Deviation of Mean Squared Errors, MC: Mean of Cycle Numbers, SDC: Standard Deviation of Cycle Numbers.

 Conclusion

In this paper, the firefly algorithm is applied to

train feed-forward artificial neural networks. Three

well known classification problems are considered

in this work. In the experiments, for each

benchmark problem, the FA results are produced

by using sigmoid transfer function and by using

sine transfer function. The FA results obtained by

using sigmoid transfer function are compared with

the results reported by artificial bee colony (ABC)

and genetic algorithms (GA), which are also

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 160

obtained for these benchmark problems by using

sigmoid transfer function. According to these

experimental results it can be concluded that FA

performs better than GA algorithm, but worse than

ABC algorithm for the majority of benchmark

problems. Although for sigmoid transfer function

firefly learning algorithm shows tendency to be

trapped in the local minima, it has fast convergence

speed for several benchmarks.

Further, in order to investigate the impact of the

transfer function on the performance of firefly

learning algorithm, and hence on FNN

performance, the FA results provided by sigmoid

and by sine transfer functions are compared. These

experimental results show that for sine transfer

function the tendency of firefly learning algorithm

to be trapped in the local minima is significantly

reduced. In this case FA has 100% success and a

very fast convergence speed for almost all

benchmarks.

Considering the experimental results, the

possibility of simultaneously evolving weights and

transfer functions may be the part of our future

work. Also, the possible modifications in the search

strategy of FA in order to provide better

balance of exploration and exploitation will be

investigated.

References:

[1] Rumelhart, D.E., Williams, R.J., Hinton, G.E.,

Learning internal representations by error

propagation, Parallel Distributed Processing:

Explorations in the Microstructure of

Cognition, Volume 1, 1986, pp. 318–362

[2] D. J. Montana and L. Davis, Training

Feedforward Neural Networks Using Genetic

Algorithms, Proceedings of the International

Joint Conference on Articial Intelligence,

1989, pp. 762-767

[3] Tsai, J.T., Chou, J.H., Liu, T.K.: Tuning the

Structure and Parameters of a Neural Network

by Using Hybrid Taguchi-Genetic Algorithm.

IEEE Transactions on Neural Networks,

Volume 17, Issue 1, 2006, pp.69-80

[4] Mendes, R., Cortez, P., Rocha, M., Neves, J.,

Particle swarm for feedforward neural network

training. In: Proceedings of the International

Joint Conference on Neural Networks, Vol. 2,

2002, pp. 1895–1899

[5] Karaboga D., Akay B., Ozturk C., Artificial

Bee Colony (ABC) Optimization Algorithm

for Training Feed-Forward Neural Networks,

LNCS: Modeling Decisions for Artificial

Intelligence, Volume 4617, 2007, pp.318-329

[6] D. Karaboga, C. Ozturk, Neural Networks

Training by Artificial Bee Colony Algorithm

on Pattern Classification, Neural Network

World, Volume 19, Number 3, 2009, pp.279-

292

[7] X.S. Yang, Nature-Inspired Metaheuristic

Algorithms, Luniver Press (2008)

[8] X.S.Yang, Firefly algorithms for multimodal

optimization, in: Stochastic Algorithms:

Foundations and Applications, SAGA 2009,

Lecture Notes in Computer Sciences,

Vol.5792, 2009, pp. 169-178

[9] W. Duch and N. Jankowski, Survey of neural

transfer functions, Neural Computing Surveys,

Volume 2, Issue 1, pp. 163—212, 1999.

[10] W. Duch and N. Jankowski. Transfer

functions: hidden possibilities for better neural

networks, In 9th European Symposium on

Artificial Neural Networks, Brusells, Belgium,

2001, pp. 81–94

[11] M. Annunziato, I. Bertini, M. Lucchetti, S.

Pizzuti, Evolving Weights and Transfer

Functions in Feed Forward Neural Networks,

Proc. EUNITE2003, Oulu, Finland, 2003

[12] D. Liu, M.E. Hohil, S. H. Smith, N-bit parity

neural networks: new solutions based on linear

programming, Neurocomputing, Vol.48, no.1-

4, 2002, pp. 477–488

Recent Advances in Knowledge Engineering and Systems Science

ISBN: 978-1-61804-162-3 161

