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ABSTRACT
Many hard optimization problems have been efficiently solved by two notable swarm intelligence algorithms, artificial bee colony
(ABC) and firefly algorithm (FA). In this paper, a collaborative hybrid algorithm based on firefly and multi-strategy artificial bee
colony, abbreviated as FA-MABC, is proposed for solving single-objective optimization problems. In the proposed algorithm,
FA investigates the search space globally to locate favorable regions of convergence. A novel multi-strategy ABC is employed to
perform local search. The proposed algorithm incorporates a diversity measure to help in the switch criteria. The FA-MABC
is tested on 40 benchmark functions with diverse complexities. Comparative results with the basic FA, ABC and other recent
state-of-the-art metaheuristic algorithms demonstrate the competitive performance of the FA-MABC.
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1. INTRODUCTION

There are numerous engineering and science problems which can
be formulated as global optimization problems. These problems are
often difficult to solve due to their diverse properties, such as non-
linearity, nondifferentiability, multi-modality and nonseparability.
During last decades many metaheuristic algorithms have been pro-
posed for solving hard optimization problems [1–5].

Two major characteristics of metaheuristics are exploitation and
exploration [6]. Exploitation is the process of focusing search on
a local region by using the information of previously visited good
solutions. Exploration allows the algorithm to explore entirely new
regions of a search space, often by randomization. Toomuch explo-
ration increases the chance of finding the optimal solutionwith bet-
ter accuracy, but usually tends to decrease the convergence speed
of the algorithm [7]. On the other hand, high exploitation tends to
increase the convergence rate of the algorithm, but the probabil-
ity of finding global optimum may be low. Since exploitation and
exploration are fundamentally conflicting processes, their balanced
combination is essential for successful optimization performance.

Most metaheuristics are based on the swarm intelligence [8]. When
solving an optimization problem, these algorithms use multiple
interacting intelligent agents, inspired by the collective behavior
of social insects, such as bees or ants. Firefly algorithm (FA) [9]
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and artificial bee colony (ABC) [10] are two widely used swarm
intelligence algorithms originally proposed to solve numerical opti-
mization problems. Both algorithms have simple concepts and easy
implementation. The main difference between the FA and ABC is
how new solutions are created and then used at each iteration. Ear-
lier studies indicate that the FA has good exploration and exploita-
tion abilities, but it may suffer from high computational complexity
and it may show slow convergence speed during the search process
[11,12]. On the other hand, the solution search equation of ABC
algorithm is good for exploration [13], while the selection mecha-
nism guides the search toward regions of the best solutions. How-
ever, solution quality does not improve sufficiently fast when the
ABC is applied to solve some complex problems [14].

According to the no free lunch theorem [15], no single algorithm
is suitable for solving all optimization problems. Consequently, it
is important to know which algorithm performs best on which
type of optimization problems. Therefore, original variants ofmeta-
heuristics are later modified to improve their performances. The
main enhancements are reached by the adaptation of parameters, by
modifications of solution search equations and creation of ensem-
ble method which combines multiple search strategies [13,16,17].
Besides these improvements, there are also hybrid algorithms
which have a prominent role in enhancing the search capability of
algorithms.

In a hybrid algorithm, two or more algorithms are cooperatively
solving an optimization problem [18]. The aim of hybridization is
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to combine the benefits of each algorithm, while at the same time it
tries to minimize any considerable disadvantage. As a result, hybrid
algorithm can achieve better performance than a single algorithm
in terms of either computational speed or accuracy. Since various
algorithms have their own characteristics which are suitable for dif-
ferent problems, there are a lot of studies that hybridize different
metaheuristics in order to produce a valuable synergy from their
combination. Recent studies indicate that hybrid approaches are
effective for global optimization [19,20].

Motivated by these research studies, in this paper a novel hybrid
method based on FA and multi-strategy artificial bee colony
(MABC) is proposed to solve complex numerical optimization
problems. The proposed hybrid algorithm, abbreviated as FA-
MABC, belongs to the category of collaborative hybrids with
multi-stage structure [18]. There are two stages in this case. To take
advantage of the good search abilities of the FA, it is used in the first
stage with the intention to find promising areas of the search space.
In order to reduce computational complexity of the FA, the FA vari-
ant in which each solution in each iteration can be updated at most
once is employed. Output of the FA is then supplied as the input to
a novel multi-strategy ABC, which performs a local search. In the
proposed MABC two distinct search strategies coexist throughout
the search process and participate in creating candidate solutions.
The use of the two search strategies which have different advantages
so that they support each other during the search and the selection
mechanism, enables the proposed algorithm to efficiently investi-
gate the neighborhood of good solutions. Finally, a diversity mea-
sure is used in order to determine when to switch from the FA to
the MABC.

To evaluate the performance of FA-MABC, it is tested on 12
well-known benchmark functions and on a set of 28 benchmark
instances taken from CEC2013 competition. The obtained results
are compared to those of the basic FA, ABC and their recent vari-
ants, as well as two other successful metaheuristic approaches.

Rest of this paper is organized as follows: The basic FA and ABC
are presented in Section 2. Section 3 describes the new approach
FA-ABC in detail. The experimental results and the corresponding
analysis are presented in Section 4. Section 5 provides concluding
remarks.

2. A BRIEF INTRODUCTION OF FA AND ABC

2.1. Firefly Algorithm

The FA, developed by Yang, is a population-based metaheuristics
inspired by communication behavior of flashing fireflies [8]. Its
mathematical model is proposed according to the following ideal-
ized characteristics of the flashing fireflies [21]: (1) all fireflies are
unisex, (2) a firefly’s attractiveness is proportional to its light inten-
sity or brightness and (3) a firefly’s brightness is determined by the
landscape of the fitness function.

In the population of fireflies, each firefly represents a candidate
solution in the search space. The attractiveness between fireflies can
be defined by monotonically decreasing function [8]:

𝛽 = 𝛽min + (𝛽0 − 𝛽min) ⋅ e−𝛾⋅r
2
i,j , (1)

where ri,j is the distance between firefly i and firefly j, while 𝛽min, 𝛽0
and 𝛾 are predetermined algorithmparameters: theminimumvalue
of 𝛽, the maximum attractiveness value and absorption coefficient,
respectively. Distance ri,j between two fireflies i and j at positions xi
and xj is obtained by

ri,j =
√√√
√

D

∑
k=1

(xi,k − xj,k)2, (2)

where D is the problem dimension and xi,k and xj,k are the kth
dimension value of solutions xi and xj. The parameter 𝛽0 repre-
sents attractiveness when two fireflies are found at the same point
of search space, while the parameter 𝛾 characterizes the variation
of the attractiveness. It was reported in the literature that for most
problems the parameter 𝛽0 can be set to 1 and the parameter 𝛾 can
take value from 0.01 to 100 [9].

If the objective function value of xj is less than xi, each parameter
value xi,k is updated by the following rule described in Ref. [8]:

xi,k = xi,k + 𝛽 ⋅
(
xj,k − xi,k

)
+ 𝛼 ⋅

(
randi,k −

1
2
)
, (3)

where xi,k and xj,k are the kth dimension value of solutions xi and
xj, respectively, and k = 1, 2, ...,D. The second term on the right
hand of Eq. (3) is due to the attraction, while the third term is ran-
domization term. In the randomization term, 𝛼 ∈ [0, 1] is the ran-
domization parameter and randi,k is a random number uniformly
distributed between 0 and 1.

Later findings indicate the solution quality can be improved by
reducing the randomization parameter 𝛼 with a geometric progres-
sion reduction scheme which can be described by [8]

𝛼 = 𝛼0 ⋅ 𝜃t, (4)

where 𝛼0 is the initial randomization parameter, 𝜃 ∈ [0, 1] is the
randomness reduction constant, t ∈ [0,Gmax] is the pseudo time
for simulations and Gmax is the maximum generation number. This
step is optional in the FA.

The pseudo code of the basic FA is described in Algorithm 1. The
input ofAlgorithm1 includes the population size value SP, themax-
imum number of fitness evaluations MaxNFEs, the value of ran-
domization parameter𝛼, the value of parameter𝛽min, themaximum
attractiveness value 𝛽0, the value of absorption coefficient 𝛾 and the
objective function f. The output of Algorithm 1 is the solution with
the smallest objective function value.

2.2. Artificial Bee Colony

ABC algorithm is a metaheuristic technique inspired by the for-
aging behavior of natural honey bee swarms [10]. In the ABC a
colony of artificial bees consists of three groups of bees: employed
bees, onlooker bees and scouts. One half of the population of arti-
ficial bees are employed bees, while the other half consists of the
onlookers and scouts. The number of the employed bees is equal
to the number of food sources (possible solutions). Employed bees
are all bees that are currently exploiting a food source, meanwhile
they share their information about food sources with the onlook-
ers. Onlooker bees select quality food sources from those found by
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Algorithm 1: Pseudo-code of the basic FA
Create initial population of solutions xi, i = 1, 2,… , SP;
Calculate the objective function value of each solution;
FEs = SP;
while FEs <MaxNFEs do
for i = 1 to SP do
for j = 1 to SP do
if f(xj) < f(xi) then

Move xi towards xj according to Eq. (3);
Calculate the objective function value of the new xi;

FEs++;
end if

end for
end for
Rank the fireflies and find the current best;
end while

the employed bees and further search the foods around the selected
food sources. Employed bees that abandon their unpromising food
sources to search for new ones become scout bees.

In the initialization step of the ABC algorithm, the population of
solutions is created randomly in the search space. After the initial-
ization step, the employed, onlooker and scout phases are repeated
a predefined number of generations. In the end of each generation,
the found source so far is memorized.

In the employed phase every solution xi is updated by

vi,m = xi,m + 𝜑 ⋅ (xi,m − xl,m), i = 1, 2, ..., SP/2, (5)

where m is a randomly chosen parameter index, 𝜑 is a uniform ran-
dom number in range (−1,1) and xl represents the other solution
selected randomly from the population. The update process is final-
ized after greedy selection is applied between xi and vi.

In the onlooker phase, the solutions which will be subjected to the
update process are selected according to the fitness proportionate
selection. The update process in the onlooker phase is the same as
in the employed phase. In the scout phase, solutions that do not
change over a certain number of trials are again initialized.

2.3. FA and ABC Variants

Nowadays the FA and ABC represent some of the most popular
metaheuristic algorithms due to their effective performance and
easy implementation.

Several prominent FA variants were proposed for solving contin-
uous optimization problems. Novel chaotic improved firefly algo-
rithm (CFA) was presented in Ref. [22]. Different chaotic maps are
used to replace the attraction parametes 𝛽 and 𝛾 of FA in order to
improve the reliability of the optimization results. To reduce high
computational cost of FA, several FA variants have been proposed
[11,12]. For instance, in Ref. [11] the FA with random attraction
(RaFA) which uses a random attraction model and a Cauchy muta-
tion operator is developed. Also, in Ref. [12] the FA with neighbor-
hood attraction (NaFA) is proposed. In the NaFA each firefly was
attracted by other brighter fireflies selected from a limited neigh-
borhood. The FA variant (FADMF) in which the sex of fireflies is
distinguished is presented in Ref. [23]. A hybrid algorithm based
on genetic algorithm and the FADMF is presented in Ref. [19]. In
Ref. [20] a hybrid FA and particle swarm optimization algorithm

which uses three novel operators is proposed. An improved chaotic
FA (ICFA) is recently proposed variant of FA which uses chaotic FA
as the parent algorithm and introduces a novel search strategy [24].

Although the basic FA was originally developed for solving con-
tinuous optimization problems, the extended versions have been
also described for the discrete and combinatorial types of problems.
Some of these versions were applied to solve scheduling problems,
queueing system and traveling salesman problems [21].

There are numerous ABC variants for solving numerical optimiza-
tion problems. For instance, in Ref. [14] it was noticed that the ABC
algorithm needs more parameters to be mutated in the parent solu-
tion in order to improve convergence speed. Hence, the ABC search
strategy used a novel control parameter that determines how many
parameters should be modified for the production of a neighbor-
ing solution. Multi-strategy ensemble ABC (MEABC) algorithm
is ABC variant in which a pool of distinct solution search strate-
gies coexists throughout the search process and competes to cre-
ate candidate solutions [13]. A novel ABC algorithm with local and
global information interaction (ABCLGII) is a recent ABC vari-
ant which proposes two information interaction mechanisms for
employed and onlooker bees [25]. The ABC based on the gravity
model (ABCG) is a newly proposed variant of ABC which employs
an attractive forcemodel for choosing a better neighbor of a current
solution to enhance the exploitation ability of ABC [26]. A novel
individual-dependent multi-colony ABC algorithm (IDABC) is a
recent ABC variant, in which the whole colony is divided into three
sub-colonies and three evolution operators are introduced into the
corresponding sub-colonies in order to play different roles [27]. An
improved ABC based on the multi-strategy fusion (MFABC) is one
of the latest ABC variants proposed in Ref. [28] to enhance the
search ability of ABC with small population.

Apart from ABC variants for numerical optimization problems, the
extended ABC versions also have been described for the discrete
and combinatorial types of problems. Some of these versions were
applied to solve capacitated vehicle routing problem, the reliabil-
ity redundancy allocation problem, different versions of scheduling
problem, economic load dispatch problem and knapsack problem.
Application areas of ABC algorithm include neural networks, image
processing, datamining, industrial,mechanical, electrical, electron-
ics, control, civil and software engineering [29].

3. THE PROPOSED APPROACH: FA-MABC

The randomization term of the FA search equation gives an abil-
ity to the algorithm to escape from a local optimum in order to
search on a global level. In terms of the attraction mechanism, indi-
viduals can subdivide themselves into several subgroups, and each
group can seek around a local region [30]. These characteristics
point out that the FA has good exploration and exploitation abil-
ities. Although the FA has gotten success in different areas, it has
some insufficiencies. In the FA the solutions are still changing as
the optima are approaching, which may slow down the conver-
gence speed [9]. In addition, the search process of the FA has high
computational complexity since each firefly is attracted by all other
brighter fireflies in the swarm.

On the other hand, the ABC search strategy has good explo-
ration ability. Thus ABC is very efficient in solving multimodal and



Brajević et al. / International Journal of Computational Intelligence Systems 13(1) 810–821 813

multidimensional basic functions. However, the convergence rate
of the ABC is slow when it is applied to solve hybrid complex prob-
lems. To successfully solve these problems, the ABC solution search
equation needs to be modified [14].

Since the FA and ABC have their own positive features, their com-
bination could produce a valuable synergy. Therefore, a collabo-
rative hybrid algorithm based on firefly and ABC is developed.
The FA explores the search space globally to locate the favorable
regions of the search space, whereas the novel version of ABC algo-
rithm performs local search. Inspired by earlier mentioned obser-
vations related to ABC, we propose a novel multi-strategy ABC to
act as the local searcher. In addition, the diversity measure is used
to help in the switch criteria. Therefore the proposed FA-MABC
has three main components, the global search optimizer, the local
search algorithm and the switch criteria. The details of each com-
ponent and implementation steps of the FA-MABC are presented
as follows.

3.1. The Global Search Optimizer

In the proposed hybrid algorithm, the global searcher is the variant
of FA which uses random attraction model. In this FA variant each
solution is compared to another randomly selected solution from
the set of promising solutions in the population. Assume that all SP
individuals in the population are sorted according to their objective
function values. Hence, the first firefly x1 is the best one, and the
SPth firefly xSP is the worst one. In the proposed random attraction
model, each solution xi, randomly selects one solution, xj, from the
set {x1, x2, ...xi−1}. Then the update of each parameter value xi,k is
determined by

xt+1
i,k = xt

i,k + 𝛽 ⋅
(
xt
j,k − xt

i,k

)
+ 𝛼Sk ⋅

(
randi −

1
2
)
, (6)

where Sk is the length scale for the kth variable, randi is a uniform
randomnumber in range (0,1), t denotes the generation number, j∈
{1, 2, … i−1} and k = 1, 2, ...,D. Our simulations confirmed earlier
observations that the search process of FA can be superior if the
randomization parameter 𝛼 is related to the scale of each variable
[8,22]. The scaling parameters Sk are calculated by

sk = |uk − lk|, (7)

where lk and uk are the lower and upper bound of the parameter xi,k.

In the basic FA, the average number of updates of solution in each
generation is (SP−1)

2 . On the other hand, in the proposed FA vari-
ant, each solution can be updated at most once in each generation.
The number of solution updates is much lower in the proposed FA
variant, than in basic FA.

3.2. The Local Search Algorithm

ABC performance mainly depends on its search equation given by
Eq. (5). According to the Eq. (5), the new candidate solution is cre-
ated by moving the old solution to a randomly selected individual,
and the search direction is completely random. Hence the Eq. (5) is
random enough for exploration and consequently can provide solu-
tions with plenty of diversity and far from the actual solutions.

Diverse optimization problems require different search strategies
depending on the characteristics of problems. It was noticed that
the ABC needs to mutate more parameters in the neighborhood
of the current solution to successfully solve hybrid complex prob-
lems, while the use of standard search strategy given by the Eq. (5)
can efficiently solve basic functions [14]. Therefore, the number of
parameters in the parent solution which are modified in the update
process is very important.

Combining search strategies which have different abilities so that
they can complement each other during the search process can
achieve better optimization results than a single search strategy as
in the basic ABC [13]. Motivated by these findings, an ensemble of
multiple solution search strategies for ABC (MABC) is developed to
perform local search. In the proposedMABC, two search equations
coexist throughout the search process and compete to create better
new solutions. The first one is basic ABC search strategy given by
Eq. (5). The second search strategy employed in theMABC in order
to generate a new candidate solution vi by using the solution xi, is
described by

vi,k = xi,m + 𝜑i ⋅ (xi,m − xl,m), (8)

where m is a randomly chosen parameter index, 𝜑i is a random
number in range (-1,1), xl represents the other solution selected
randomly from the population and k = 1,2, ... D.

It is expected that the basic ABC search equation given by Eq. (5)
provides good exploration ability but slower convergence speed,
while the employed search strategy of the MABC given by Eq. (8)
shows the fast convergence rate.

Algorithm 2: Dynamic regulation for search strategy
if f(vi) < f(xi) then

xi = vi;
{solution xi is updated and its assigned search strategy Si is kept for
further search}

else
if Si = S1 then

Si = S2;
else

Si = S1;
end if
{solution xi is kept and its assigned search strategy is replaced for
further search}

end if

In order to determine how to assign these search strategies to solu-
tions from the population, an encodingmethod is used. This encod-
ing method is inspired by the study given in Ref. [13]. Let us denote
the search strategy given by the Eq. (5) as S1 and the search strat-
egy given by the Eq. (8) as S2. At the beginning of the search, each
solution xi is randomly assigned a search strategy, Si, from the set
{S1, S2}. In the course of search process, the value of Si is changed
according to the quality of the new candidate solution vi. If the can-
didate vi has lower objective function value than its parent xi, it indi-
cates that the current search equation is appropriate for the search.
In that case, the current strategy is kept for the further search and
the parent solution is replaced with the candidate solution. Other-
wise, it means that the current strategy cannot enhance the quality
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of solution and it is replaced. Also, in that case the parent solution
is kept for next generation.

This encoding method is presented in Algorithm 2. The input of
Algorithm 2 includes the parent solution xi and its assigned search
strategy Si, the candidate solution vi and the objective function f.
The output of Algorithm 2 is the solution xi and its assigned search
strategy Si which will be used in next generation.

3.3. The Switch Criteria

Differences among individuals of a population are prerequisite for
exploration, but toomuch diversity in each phase of the search,may
lead to inefficient search. Population diversity is usually high at the
beginning of a search process, and it decreases as the population
moves towards the global optimum.

In the implementation of the FA-MABC it is important to know
when to switch from the FA to MABC. For this purpose the FA-
MABC incorporates the diversity metric as Eq. (9) to measure the
population diversity [25].

Diversity = 1
SP

SP

∑
i=1

√√√
√

1
D

D

∑
k=1

(xi,k − x′k)2, (9)

where SP is number of solutions in the population, D is the dimen-
sion of problem and x′k is the central position of the whole popu-
lation. In order to determine when to switch the search to MABC,
the population diversity during each generation is measured.

Variable counter is set to 0 before the search. Then, in each
iteration the population diversity is calculated. If the population
diversity in the current iteration is higher than the population diver-
sity from the previous one, we increase counter by one. Otherwise,
the value of counter does not change. When the value of variable
counter becomes higher than the predefined threshold value (T),
it means that too many oscillations in the population diversity are
produced. Therefore, it indicates that the solution quality does not
improve sufficiently quickly. In that moment the search is switched
to the MABC, to help the proposed approach avoid stagnation.

3.4. The Pseudo-Code of the FA-MABC

The FA-MABC uses the boundary constraint handling mechanism
which ensures that if variables of a created solution by each of these
three search equations go outside of boundaries, a diverse set of val-
ues is created. This boundary constraint handling method is given
by [16]

xi,k =
⎧⎪
⎨⎪
⎩

2 ⋅ lk − xi,k , if xi,k < lk
2 ⋅ uk − xi,k , if xi,k > uk

xi,k , otherwise
(10)

where xi,k is the variable k of the new solution xi, lk and uk are the
kth lower bound and upper bound of the parameter xi,k.

Algorithm 3: Pseudo-code of the FA-MABC
Create initial population of solutions xi, i = 1, 2,… , SP and calculate objec-
tive function value of each solution;
Randomly initialize Si for each solution;
Calculate the population diversity d1 according to Eq. (9);
t = 0;
counter = 0;
while t < Gmax do
if (counter < T) then
for i = 1 to SP do

Randomly select solution xj, where j ∈ {1, 2, … i− 1};
if f(xj) < f(xi) then

Move xi towards xj according to Eq. (6); 
Apply control of the boundary conditions on the created solution
by Eq. (10) and evaluate it;

end if
end for
Rank the solutions;
Calculate the population diversity d2 according to Eq. (9);
if (d1 < d2) then

counter = counter + 1;
end if
d1 = d2;

else
for i = 1 to SP do

Produce new solution vi for the parent solution xi according to the
search strategy Si;
Apply control of the boundary conditions on the created solution vi
by Eq. (10) and evaluate it;
Update xi and Si according to Algorithm 2;

end for
end if
Find the current best solution;
t = t + 1;

end while

The pseudo-code of the FA-MABC is described inAlgorithm 3. The
input ofAlgorithm3 includes the population size value SP, themax-
imum generation numberGmax, the value of randomization param-
eter 𝛼, the value of parameter 𝛽min, the maximum attractiveness
value 𝛽0, the value of absorption coefficient 𝛾, the value of parame-
ter T and the objective function f. The output of Algorithm 3 is the
solution with the smallest objective function value.

To solve a particular problem f, assume that O(f) is the computa-
tional time complexity of evaluating its function value. It can be
noticed that in each generation of the FA-MABC, each individual
from the population can be updated at most once. Since the maxi-
mum number of generations is set to Gmax, the computational time
complexity of the FA-MABC is O(Gmax ⋅ SP ⋅ f).

4. EXPERIMENTAL STUDY

To investigate the performance of the FA-MABC, 12 well-known
scalable benchmark functions with 30 and 100 variables and a set
of 28 benchmarks taken from CEC2013 competition are used. The
brief descriptions of the 12 well-known benchmark functions are
listed in Table 1. When the objective function value of the best
solution obtained by an algorithm in a run is less than the cor-
responding acceptable value, the run is regarded as a successful
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run. Presented benchmark functions can be divided into two cat-
egories according to their features: unimodal functions (f1− f6)
and multimodal (f7− f12). Additionally, as the number of dimen-
sions increases, the search space of a problem grows exponentially
and its characteristics may change. More details about the descrip-
tion of these benchmark problems can be found in Ref. [25]. The
benchmark instances from the CEC2013 cover a wide range of
problem properties, such as multi-modality, nonseparation, non-
symmetrization and rotation. These 28 benchmarks include 5 uni-
modal functions (F1 − F5), 15 basic multimodal functions (F6
− F20) and 8 composition functions (F21 − F28). More detailed
descriptions of CEC2013 benchmarks can be found in Ref. [31].

In order to evaluate the performance of the FA-MABC, it is com-
pared to the basic FA, ABC and recent variants of the FA and
ABC. In these experiments two types of comparisons were exam-
ined. First type of comparison is a direct comparison, where the
basic FA, ABC and FA-MABC were implemented and their corre-
sponding performances are investigated. In the second type of com-
parison, the results of other prominent variants of FA and ABC
were taken from the specialized literature and compared with those
achieved by FA-MABC. The last experiment is used to discuss how
the proposed algorithmic components affect the performance of
FA-MABC.

4.1. Comparison with the Basic FA and ABC

In this subsection, the FA-MABC is compared with the basic FA
and ABC on 12 scalable benchmark functions listed in Table 1
with 30 and 100 variables. Each algorithm was implemented in Java
programming language on a PC with Intel(R) Core(TM) i5-4460
3.2GHz processor with 16GB of RAM and Windows OS.

In the proposed FA-MABC, values of the parameter Gmax are 7500
and 25000 for benchmark functions with 30 and 100 variables
respectively. Hence, the maximal number of function evaluations,
MaxNFEs, is 5000 D. Beside the control parameter Gmax, the FA-
MABC has few other control parameters that greatly influence its
performance. The preliminary testing of the FA-MABC was done
in order to get good combinations of parameter values. A value of
SP equal to 20 was found to be a good choice for all tests carried
out in this paper. Our tests confirmed earlier findings that the ran-
domization parameter 𝛼 in range (0, 1), the initial attractiveness 𝛽0

Table 1 Benchmark functions used in the experiments, where D is the
problem dimension.

Function Name Search Range Min. Accept

f1 Sphera [−100, 100]D 0 1e-8
f2 Schwefel 2.22 [−10, 10]D 0 1e-8
f3 Schwefel 2.21 [−100, 100]D 0 1e+0
f4 Step [−100, 100]D 0 1e-8
f5 Quartic [−1.28, 1.28]D 0 1e-1
f6 Rosenbrock [−5, 10]D 0 1e-1
f7 Rastrigin [−5.12, 5.12]D 0 1e-8
f8 Griewank [−600, 600]D 0 1e-8
f9 Schwefel2.26 [−500, 500]D 0 1e-8
f10 Ackeley [−32, 32]D 0 1e-8
f11 Penalized1 [−50, 50]D 0 1e-8
f12 Penalized2 [−50, 50]D 0 1e-8

of 1 and the parameter 𝛾 from 0.01 to 100 can be used for most of
problems [9]. Hence, the FA-MABC employs the following settings:
𝛼 is 0.8, 𝛽0 is 1.0, 𝛽min is 0.2 and 𝛾 is 1. Also, it was empirically deter-
mined that the value 0.01 ⋅ Gmax of the parameter T is suitable for
the FA-MABC.

In the FAandABC, theMaxNFEs is set to 5000D in order to provide
the fair comparison between these algorithms. In Ref. [32] it was
found that the size of population from 10 to 25 is sufficient for most
applications of the FA. Therefore, in the FA the SP value is set to
20. In the case of the FA, the values of specific control parameters
are 𝛼0 is 0.2, 𝛽0 is 1.0, 𝛽min is 0.2, 𝛾 is 1 and 𝜃 is (10−4/0.9)1/Gmax .
In the ABC the value of parameter limit is set to (SP ⋅ D)/2. The
FA and ABC use the same specific parameter settings as those used
in the original papers, i.e., in Ref. [8] and in Ref. [10] respectively.
All compared algorithms are conducted by 30 independent runs for
each benchmark problem.

The mean and corresponding standard deviation values of 30 inde-
pendent runs are used to determine the quality or accuracy of the
solutions achieved by the FA, ABC and FA-MABC. The conver-
gence speed of each approach is compared by the metric AVEN.
This metric records the average number of function evaluations
needed to reach the acceptable value, which is used to evaluate the
convergence speed. The robustness or reliability of each algorithm
is compared by measuring the success rate (SR%). This rate denotes
the ratio of successful runs in the 30 independent runs. The con-
vergence speed is faster if the value of AVEN is smaller, while the
robustness of an algorithm is better if the value of SR is greater.
Wilcoxon’s rank sum test at a 0.05 significance level was applied
between the comparedmetaheuristic algorithm and the FA-MABC.
The result of the test is presented as +/=/-, whichmeans that the cor-
responding algorithm is significantly better than, statistically simi-
lar to, and significantly worse than the FA-MABC.

The statistical results of the comparisons on the benchmarks with
30 and 100 dimensions are summarized in Tables 2 and 3. These
results include the obtained mean best function values and cor-
responding standard deviations, AVEN and SR results. The best
results are indicated in bold.

Results from Tables 2 and 3 clearly show that the FA-MABC is sig-
nificantly better than the basic ABC and FA on all test functions
in terms of solution accuracy, robustness and convergence rate.
Exceptions are problems f4 and f7 at each tested dimension, where
the ABC and FA-MABC reached the same optimization results.
Additionally, the superiority of the FA-MABC is not affected by the
growth of the dimensions of search space.

4.2. Comparison with the Other Variants of
FA and ABC

In this subsection, the FA-MABC is compared with six recent FA
and ABC variants, i.e., RaFA [11], NaFA [12], ICFA [24], ABCLGII
[25], ABCG [26] and MFABC [28] on 12 test functions with 30
variables. These 12 approaches were previously tested to solve same
benchmarks and had a very good results.

Results reported by other FA and ABC variants were taken from
the specialized literature and compared with those achieved by the
FA-MABC. The results obtained by the RaFA and NaFA are taken
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Table 2 Comparison results of the FA, ABC and FA-MABC on 12 benchmark functions with 30D. The best
results are indicated in bold.

Fun. Metric FA ABC FA-MABC

f1 Mean(std.) 6.28e-05(1.02e-05)- 4.95e-16(7.47e-17)- 3.97e-286(0.00e+00)
AVEN(SR) NaN(0) 32233(100) 6133(100)

f2 Mean(std.) 3.76e-03(3.77e-04)- 1.30e-15(1.35e-16)- 2.36e-152(8.26e-152)
AVEN(SR) NaN(0) 48287(100) 9415(100)

f3 Mean(std.) 3.79e-03(5.81e-04)- 7.56e-01(4.61e-01)- 2.53e-97(1.36e-96)
AVEN(SR) 35983(100) 123820(80) 652(100)

f4 Mean(std.) 1.67e-01(5.82e-01)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
AVEN(SR) NaN(0) 9582(100) 1009(100)

f5 Mean(std.) 7.08e-02(1.74e-02)- 4.96e-02(9.05e-03)- 5.50e-04(2.55e-04)
AVEN(SR) 16055(97) 45506(100) 223(100)

f6 Mean(std.) 3.74e+01(2.84e+01)- 1.93e-01(4.71e-01)- 8.80e-30(2.52e-29)
AVEN(SR) NaN(0) 69257(77) 1984(100)

f7 Mean(std.) 4.15e+01(9.22e+00)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
AVEN(SR) NaN(0) 50031(100) 6760(100)

f8 Mean(std.) 4.67e-03(5.05e-03)- 9.03e-04(3.73e-03)- 0.00e+00(0.00e+00)
AVEN(SR) NaN(0) 43382(93) 6291(100)

f9 Mean(std.) 5.23e+03(7.00e+02)- 1.57e-12(2.14e-12)- 0.00e+00(0.00e+00)
AVEN(SR) NaN(0) 71002(100) 6918(100)

f10 Mean(std.) 1.93e-03(1.16e-04)- 3.86e-14(4.76e-15-) 3.64e-15(1.07E-15)
AVEN(SR) NaN(0) 55905(100) 9192(100)

f11 Mean(std.) 3.46e-03(1.86e-02)- 5.11e-16(7.01e-17)- 1.57e-32(5.47e-48)
AVEN(SR) NaN(0) 28153(100) 5568(100)

f12 Mean(std.) 3.70e-03(6.60e-03)- 4.48e-16(9.65e-17)- 1.35e-31(6.57e-47)
AVEN(SR) NaN(0) 39590(100) 9029(100)

+/=/- 0/0/12 0/2/10 -

FA, firefly algorithm; ABC, artificial bee colony; FA-MABC, firefly and multi-strategy artificial bee colony; SR, success rate.

Table 3 Comparison results of the FA, ABC and FA-MABC on 12 benchmark functions with 100D. The best
results are indicated in bold.

Fun. Metric FA ABC FA-MABC

f1 Mean(std.) 7.27e-04(7.56e-5)- 2.18e-15(1.71e-16)- 0.00e+00(0.00e+00)
AVEN(SR) NaN(0) 112177(100) 12911(100)

f2 Mean(std.) 2.87e-02(5.24e-03)- 5.03e-15(2.29e-16)- 7.25e-226(0.00e+00)
AVEN(SR) NaN(0) 171409(100) 21435(100)

f3 Mean(std.) 5.22e-02(1.69e-02)- 2.31+01(2.93+00)- 5.71e-07(1.62e-06)
AVEN(SR) 262971(100) NaN(0) 707(100)

f4 Mean(std.) 1.40e+00(16.70e+00)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
AVEN(SR) NaN(0) 35593(100) 995(100)

f5 Mean(std.) 3.70e-01(5.24e-02)- 1.58e-01(2.06e-02)- 5.71e-04(1.85e-04)
AVEN(SR) NaN(0) -(0) 454(100)

f6 Mean(std.) 1.30e+02(9.42e+01)- 6.18e-01(1.20e-01)- 8.46e-30(2.48e-29)
AVEN(SR) NaN(0) 280551(47) 2133(100)

f7 Mean(std.) 2.30e+02(2.86+01)- 0.00e+00(0.00e+00)= 0.00e+00(0.00e+00)
AVEN(SR) NaN(0) 187870(100) 12718(100)

f8 Mean(std.) 1.27e-03(2.19e-03)- 5.45e-15(2.70e-14)- 0.00e+00(0.00e+00)
AVEN(SR) NaN(0) 124554(100) 16061(100)

f9 Mean(std.) 2.87e-02(5.24e-03)- 1.18e-10(2.96e-11)- 1.09e-10(0.00e+00)
AVEN(SR) NaN(0) 331965(100) 11844(100)

f10 Mean(std.) 3.48e-03(1.58e-04)- 1.52e-13(1.10e-14)- 8.55e-15(3.26e-15)
AVEN(SR) NaN(0) 191609(100) 19556(100)

f11 Mean(std.) 2.07e-03(7.76e-03)- 2.183e-15(6.04e-16)- 4.71e-33(1.37e-48)
AVEN(SR) NaN(0) 143832(100) 10058(100)

f12 Mean(std.) 2.52e-02(3.55e-02)- 2.13e-15(1.56e-16)- 1.35e-31(6.57e-47)
AVEN(SR) NaN(0) 96054(100) 23399(100)

+/=/- 0/0/12 0/2/10 -

FA, firefly algorithm; ABC, artificial bee colony; FA-MABC, firefly and multi-strategy artificial bee colony; SR, success rate.
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from Ref. [12], while the results reached by the ICFA is taken from
Ref. [24]. The results of ABCLGII are taken from Ref. [25], the
results of the ABCG are taken from Ref. [26], while the results of
the MFABC are taken from Ref. [28]. In the RaFA and NaFA, the
value of MaxNFEs was set to 5E+05, while in the ICFA the value
of MaxNFEs was set to 3.8e+05. In the ABCLGII, ABCG, MFABC
and FA-MABC the value of MaxNFEs was set to 1.5e+5. Therefore
the fair comparison between all these algorithms is ensured. All the
other parameter settings of the FA-MABCare kept the same asmen-
tioned in the Section 4.1. The specific parameter settings of each
metaheuristic algorithm used in comparison with the FA-MABC
can be found in their original papers.

To check for statistically significant differences between the
FA-MABC and each compared algorithm for all benchmark func-
tions, the multiproblem Wilcoxon signed-rank test at a 0.05 sig-
nificance level is conducted [33]. The results of this test are repre-
sented as “+/=/−„ “ R+/ R−” and p value. Sign “+” indicates that the
FA-MABC is significantly better than the corresponding algorithm,
sign “−” indicates that the FA-MABC is significantly worse than the
corresponding algorithm and sign “=” that there is no significant
difference between the two algorithms. The sum of ranks for the
test problems in which the FA-MABC performs better than the cor-
responding algorithm is denoted by R+, while R− denotes the sum
of ranks for the opposite. Larger ranks point to larger performance
discrepancy. The null hypothesis assumes that there is no signifi-
cant difference between the mean results of the two samples, while
the alternative hypothesis assumes that there is significance in the
mean results of the two samples. The null hypothesis is rejected if
the p-value is less than or equal to the significance level 0.05.

The mean best results and the statistical results of applying Wilcox-
ons test between the FA-MABC and each FA and ABC variant are
listed in Table 4 for 12 problemswith 30 variables. Bestmean results
are indicated in bold.

As shown in Table 4, the FA-MABC outperforms or performs sim-
ilarly to its competitors in most cases. Precisely, the FA-MABC is
better than the RaFA, NaFA, ICFA, ABCLGII, ABCG and MFABC
on 9, 10, 9, 8, 6 and 7 cases respectively. In contrast, the FA-MABC
is outperformed by the RaFA, NaFA, ICFA, ABCLGII, ABCG and

MFABC on 1, 0, 1, 1, 1, 1 benchmarks respectively. With respect
to the best results reached by all compared metaheuristics, the
FA-MABC performs the best, and achieves the best results on 10
instances for these benchmarks. The second best approach is the
ABCG,which performs the best on 5 test problems. From the results
of Wilcoxon test presented in Tables 4 and 5, it can be seen that the
FA-MABC obtains higher R+ values than R− in comparison with
each compared approach. The reason is that the FA-MABC out-
performs each compared algorithm in most of the cases. From the
obtained p values it can be concluded the FA-MABC significantly
outperforms the RaFA, NaFA, ABCLGII and MFABC, while it is
comparable with the ICFA and ABCG.

4.3. Comparison on CEC2013 Test
Functions

In order to further examine the effectiveness of the FA-MABC,
it is compared with two FA variants (i.e., FADMF [23], FADCG
[19]) and two ABC variants (i.e., IDABC [27] and ABCG [26]) on
benchmark functions from CEC2013 with 30 variables. Since dif-
ferential evolution (DE) and particle swarm optimization (PSO) are
among themostwidely usedmetaheuristic algorithms, the results of
their recent variants, the multi-population ensemble DE (MPEDE)
[34] and heterogeneous comprehensive learning PSO (HCLPSO)
[35], are also included in comparison with the same of the FA-
MABC. The MPEDE algorithm uses an adaptive ensemble of three
mutation strategies [34]. The HCLPSO divides the entire pop-
ulation into two heterogeneous subpopulation groups and each
subpopulation group is assigned to carry out the exploration and
exploitation search separately [35].

The MPEDE, HCLPSO, FADMF, FADCG, ABCG and IDABC
were recently tested to solve test problems from CEC2013. The
results of FADMF and FADCG are taken from Ref. [19], while
the results of the MPEDE, HCLPSO, ABCG and IDABC are taken
from Ref. [27].

For fair comparison, value of MaxNFEs was set to 3e+05 for all
the algorithms, according to the guidelines from Ref. [31]. The

Table 4 Comparison results of the RaFA, NaFA, ICFA, ABCLGII, ABCG, MFABC and FA-MABC on 12 benchmark functions with 30D D.
The best mean results are indicated in bold.

Fun. RaFA NaFA ICFA ABCLGII ABCG MFABC FA-MABC
Mean Mean Mean Mean Mean Mean Mean

f1 5.36e-184 4.43e-29 1.24e-39 3.48e-89 3.67e-109 2.46e-123 3.97e-286
f2 8.76e-05 2.98e-15 1.54e-20 2.13e-46 6.93e-062 7.17e-64 2.36e-152
f3 2.43e+00 3.43e-15 1.67e-20 1.14e-04 2.03e-026 1.81e-02 2.53e-97
f4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0 0 0.00e+00
f5 5.47e-02 2.91e-02 1.90e-04 1.44e-02 2.70e-03 1.41e-02 5.50e-04
f6 2.92e+01 2.39e+01 2.53e-05 4.83e+00 5.39e+01 2.47e-01 8.80e-30
f7 2.69e+01 2.09e+01 5.92e-17 0.00e+00 0 0 0.00e+00
f8 0.00e+00 0.00e+00 3.70e-18 1.28e-03 0 0 0.00e+00
f9 5.03e+02 6.86e+03 3.82e-04 3.57e-12 0 1.82e-13 0.00e+00
f10 3.61e-14 3.02e-14 2.60e-14 8.95e-15 4.44e-15 1.68e-14 3.64e-15
f11 4.50e-05 1.36e-31 1.57e-32 1.57e-32 1.57e-032 1.57e-032 1.57e-32
f12 8.25e-32 2.13e-30 1.42e-31 1.50e-33 1.35e-032 1.35e-032 1.35e-31

R+/ R− 53/2 55/0 37/8 42/3 25/3 33/3 -
p value 0.009 0.005 0.086 0.021 0.063 0.036 -
RaFA, FA with random attraction; NaFA, FA with neighborhood attraction; ICFA, improved chaotic FA; ABCLGII, ABC algorithm with local and global information inter-
action; ABCG, ABC based on the gravity model; MFABC, ABC based on the multi-strategy fusion; FA-MABC, firefly and multi-strategy artificial bee colony.
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Table 5 Comparison results of the MPEDE, HCLPSO, FADMF, FADCG, IDABC, ABCG and FA-MABC on CEC2013
benchmark functions with 30D D. NA means not available. The best mean of the function error values are indicated in bold.

Fun. MPEDE HCLPSO FADMF FADCG IDABC ABCG FA-MABC
Mean err. Mean err. Mean err. Mean err. Mean err. Mean err. Mean err.

F1 0.000e+0 3.695e-13 5.61e-4 1.06e-3 0.000e+0 6.537e-13 2.274e-13
F2 1.271e+4 1.036e+6 3.96e+6 6.59e+6 1.069e+4 1.092e+7 9.965e-01
F3 4.370e+4 4.748e+7 9.14e+6 1.19e+7 2.686e+3 6.250e+8 8.771e+03
F4 1.383e-4 1.969e+3 1.38e+5 2.57e+5 9.680e-6 7.686e+4 5.402+00
F5 1.137e-13 4.832e-13 1.92e-2 1.78e-1 1.137e-13 5.400e-13 3.411e-13
F6 6.679e-13 1.796e+1 2.65e+1 2.73e+1 2.274e-13 4.160e+1 3.542e-08
F7 1.528e+1 1.704e+1 4.98e+0 6.35e+0 1.703e+1 9.944e+1 1.056e-01
F8 2.095e+1 2.096e+1 2.14e+1 2.14e+1 2.093e+1 2.093e+1 1.124e-01
F9 1.990e+1 1.716e+1 1.01e+1 8.74e+0 1.822e+1 2.913e+1 7.448e-01
F10 3.911e-2 1.935e-1 1.95e-1 5.50e-1 4.678e-2 2.635e-1 9.865e-03
F11 0.000e+0 1.812e-10 3.88e+1 2.42e+1 7.105e-15 1.492e-13 5.684e-14
F12 2.823e+1 5.261e+1 3.77e+1 2.96e+1 1.487e+1 1.307e+2 9.865e-03
F13 6.903e+1 1.282e+2 9.43e+1 7.85e+2 2.925e+1 2.065e+2 2.842e-13
F14 5.079e-1 1.392e+1 2.20e+2 1.51e+3 2.030e-1 2.504e-1 1.748e-12
F15 3.462e+3 3.598e+3 2.23e+3 2.52e+3 3.393e+3 3.816e+3 8.463e-11
F16 2.396e+0 1.618e+0 1.29e-1 3.30e-1 5.884e-3 1.653e+0 2.461e-01
F17 3.044e+1 3.504e+1 8.71e+1 7.59e+1 3.044e+1 3.044e+1 1.430e-03
F18 6.095e+1 8.244e+1 9.16e+1 8.61e+1 5.234e+1 2.101e+2 0.000e+00
F19 1.299e+0 1.434e+0 4.01e+0 3.47e+0 1.127e+0 6.914e-1 3.411e-13
F20 1.054e+1 1.003e+1 NA NA 1.047e+1 1.437e+1 1.137e-13
F21 3.054e+2 2.607e+2 3.39e+2 3.12e+2 3.593e+2 2.375e+2 1.364e-12
F22 7.861e+1 1.359e+2 2.61e+3 1.71e+3 8.839e+1 2.327e+1 1.023e-12
F23 3.515e+3 3.787e+3 3.31e+3 2.99e+3 3.561e+3 5.095e+3 9.095e-13
F24 2.426e+2 2.247e+2 2.22e+2 2.23e+2 2.402e+2 2.807e+2 9.095e-13
F25 2.530e+2 2.584e+2 2.32e+2 2.25e+2 2.616e+2 2.959e+2 6.150e-13
F26 2.000e+2 2.001e+2 2.85e+2 3.00e+2 2.000e+2 2.009e+2 2.501e-12
F27 7.491e+2 5.371e+2 5.17e+2 4.85e+2 6.783e+2 7.925e+2 2.274e-13
F28 4.356e+2 3.000e+2 3.09e+2 2.97e+2 2.750e+2 3.000e+2 2.274e-12

R+/ R− 387/19 406/0 375/3 378/0 353/53 406/0 -
p value 0.000 0.000 0.000 0.000 0.001 0.000 -
MPEDE, multi-population ensemble DE; HCLPSO, heterogeneous comprehensive learning PSO; IDABC, individual dependent multi-colony ABC
algorithm; ABCG, ABC based on the gravity model; FA-MABC, firefly and multi-strategy artificial bee colony.

FA-MABC algorithm is run 51 times. The other parameter settings
of the FA-MABC are kept the same as mentioned in the Section
4.1. Themean of the function error values obtained by theMPEDE,
HCLPSO, FADMF, FADCG, IDABC, ABCG and FA-MABC are
listed in Table 5. The best results are indicated in bold. In the
Table 5 the statistical results of applyingWilcoxons test between the
FA-MABC and each competing metaheuristic algorithm are also
presented.

According to the comparison results in Table 5, the FA-MABC out-
performs competing metaheuristic approaches in the majority of
CEC2013 test functions. Concretely, the FA-MABC performs bet-
ter than MPEDE, HCLPSO, FADMF, FADCG, IDABC and ABCG
on 23, 28, 26, 27, 21 and 28 benchmark problems respectively. On
the other hand, the FA-MABC is outperformed by the MPEDE,
HCLPSO, FADMF, FADCG, IDABC and ABCG on 5, 0, 1, 0, 7 and
0 problems respectively. Overall, based on the obtained p values it
is clear that the FA-MABC significantly outperforms the MPEDE,
HCLPSO, FADMF, FADCG, IDABC and ABCG on the CEC2013
functions.

5. DISCUSSION

In this section some experiments are performed with the aim
to investigate impact of proposed algorithmic components on
performance of the FA-MABC. Four different versions of the

FA-MABC have been tested and compared against the proposed
one on CEC2013 benchmark functions with 30 D. These versions
are described as follows:

1. Version 1: To explore the effectiveness of using the FA algo-
rithm with random attraction model as the global opti-
mizer alone, a variant of the FA-MABC which excludes this
algorithmic component is implemented. This version is
denoted as the MABC.

2. Version 2: To investigate the impact of using the proposed
multi-strategy ABC as the local optimizer alone, a variant of
the FA-MABC which excludes this algorithmic component is
implemented. This version is denoted as the FA-ra.

3. Version 3: To explore the impact of using the modified ABC
search strategy given by Eq. (8) alone, a variant of the
FA-MABC which excludes this search equation is imple-
mented. This version is denoted as the MABC-FA1.

4. Version 4: To examine the impact of using the original ABC
search strategy given by Eq. (5) alone, a variant of the
FA-MABCwhich excludes this search strategy is implemented.
This version is denoted as the MABC-FA2.

Each FA-MABC variant is performed over 51 independent runs for
each benchmark function. Value of MaxNFEs was set to 3e+05 for
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Table 6 Comparison results of the MABC, FA-ra, FA-MABC1, FA-MABC2 and FA-MABC on CEC2013
benchmark functions with 30D D. The best mean of the function error values are indicated in bold.

Fun. MABC FA-ra FA-MABC1 FA-MABC2 FA-MABC
Mean error Mean error Mean error Mean error Mean error

F1 2.274e-13 9.616e-01 2.274e-13 4.972e-01 2.274e-13
F2 1.250e+00 2.11e+00 9.999e-01 9.999e-01 9.965e-01
F3 8.880e+03 3.500e+05 3.027e+04 3.038+04 8.771e+03
F4 8.392+00 3.246e+01 9.029e+01 5.284e+00 5.402+00
F5 3.411e-13 4.344e-01 3.411e-13 2.565e-01 3.411e-13
F6 4.250e-08 1.494e-01 8.286e-04 8.112e-02 3.542e-08
F7 1.092e-01 4.935e-01 3.572e-01 1.340e-01 1.056e-01
F8 2.095e+01 2.129e+00 2.035e+00 3.607e-01 1.124e-01
F9 1.235e+00 1.980e+00 4.399e-01 8.752e-01 7.448e-01
F10 9.865e-03 4.779e-02 2.929e-02 2.920e-02 9.865e-03
F11 5.684e-14 1.918e+00 5.684e-14 8.371e-01 5.684e-14
F12 9.865e-03 4.770e-02 2.841e-02 2.875e-02 9.865e-03
F13 3.829e+01 1.839e+00 9.071e-02 8.519e-01 2.842e-13
F14 1.28e+00 5.072e+01 6.677e-02 2.135e+01 1.748e-12
F15 2.632e+03 1.241e+01 9.876e+00 9.939e+00 8.463e-11
F16 1.066e+01 9.303e-02 9.136e-01 2.515e+00 2.461e-01
F17 3.916e-02 9.665e+01 6.798e-03 4.392e+01 1.430e-03
F18 6.459e-08 7.580e+00 0.000e+00 5.169e+00 0.000e+00
F19 4.854e-01 3.197e-02 3.308e-05 7.789e-03 3.411e-13
F20 4.153e+00 1.396e+00 1.171e+01 6.779e+00 1.137e-13
F21 1.137e-12 1.947e+02 1.137e-12 1.685e+02 1.364e-12
F22 9.95e+01 1.538e+02 5.850e+01 1.348e+02 1.023e-12
F23 4.787+02 1.394e+02 9.397e+01 1.285e+02 9.095e-13
F24 9.095e-13 1.028e+02 3.383e+01 8.334e+01 9.095e-13
F25 3.270e+02 1.030e+02 3.677e+01 4.064e+02 6.150e-13
F26 2.273e-12 2.013e+02 4.088e+01 1.757e+02 2.501e-12
F27 2.728e-12 2.009e+02 3.254e+01 1.766e+02 2.274e-13
F28 2.274e-12 2.017e+02 5.790e+01 1.760e+02 2.274e-12

R+/ R− 228/3 401/5 289/11 399/7 -
p value 0.000 0.000 0.000 0.000 -

FA-MABC, firefly and multi-strategy artificial bee colony; ABC, artificial bee colony.

each algorithm. Other parameter settings for each tested algorithm
are the same asmentioned in the Section 4.1. The errormean results
and the statistical results of applying Wilcoxons test between the
FA-MABC and each described version of the FA-MABC are pre-
sented in Table 6. Best mean error results are indicated in bold. The
convergence graphs obtained by different versions of FA-MABC on
the four selected benchmarks are given in Figure 1 to provide an
inside into evolutionary trajectories of mean error values.

From Table 6 it can be seen that the FA-MABC outperforms each
tested version on the majority of benchmarks. Concretely, the
FA-MABC performs better than MABC, FA-ra, MABC-FA1 and
MABC-FA2 on 19, 27, 22 and 27 benchmark problems respec-
tively. On the other hand, the FA-MABC is outperformed by the
MABC, FA-ra, MABC-FA1 and MABC-FA2 on 2, 1, 2 and 1 prob-
lems respectively. According to the obtained p values it is clear that
the FA-MABC significantly outperforms each tested variant on the
CEC2013 functions. As shown in Figure 1, FA-MABC clearly out-
performs its competitors on the selected problems at the end of
evolution.

These observations imply that each of the four algorithmic com-
ponents significantly contributes to the good performance of the
FA-MABC. Use of the FA with random attraction model helps the
FA-MABC to discover the promising regions of the search space,
while using the proposed multi-strategy ABC assists in reaching
more accurate optimization results by performing intensive local

search. Experimental results also confirm that the use of each sug-
gested ABC search operators enables the FA-MABC to significantly
improve the quality of the obtained solutions.

6. CONCLUSION

In this paper, a novel multi-stage collaborative hybrid algorithm
based on the FA and multi-strategy ABC (FA-MABC) is proposed
to solve numerical optimization problems. The FA with random
attraction model performs global search whereas a novel multi-
strategy ABC is developed to act as local optimizer.

The proposed FA-MABC efficiently utilizes the benefits of the FA
and MABC through the two stages. In the first stage, the FA exten-
sively explores the search space to find the promising areas. It is
noticed that the FA can provide strong exploration ability, but itmay
show slow convergence rate due to its oscillatory behavior as the
search process proceeded toward the optimum. To avoid stagnation
of the search, the diversity measure is employed to determine when
the output of the FA will be supplied as the input to the MABC. The
MABC employs two search strategies with different advantages so
that they complement each other during the search. The use of the
efficient integration of different search operators and the selection
mechanism can conduct a more refined search in the promising
regions to improve both, the accuracy of the solutions and conver-
gence speed.
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Figure 1 Convergence graphs of the mean function error values for the selected problems.

In order to verify the performance of the FA-MABC, it is tested on
a large set of numerical benchmark functions. The computational
results showed that the FA-MABC significantly outperformed the
basic FA and its five prominent variants, the basic ABC and its four
outstanding variants and two other popular metaheuristic algo-
rithms on majority of the benchmark functions. Also, experimen-
tal results validate that each algorithmic component, the FA with
random attraction model, the multi-strategy ABC and each used
ABC search strategy, significantly contributes to superior perfor-
mance of the FA-MABC. In the future work, the performance of the
FA-MABCapplied tomulti-objective optimization problemswill be
investigated. The FA-MABC can also be used to solve some practi-
cal optimization problems.
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