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Abstract: This paper introduces a heuristic for multiple sequence alignment aimed at improving
real-time object recognition in short video streams with uncertainties. It builds upon the idea of
the progressive alignment but is cognitively economical to the extent that the underlying edit dis-
tance approach is adapted to account for human working memory limitations. Thus, the proposed
heuristic procedure has a reduced computational complexity compared to optimal multiple sequence
alignment. On the other hand, its relevance was experimentally confirmed. An extrinsic evaluation
conducted in real-life settings demonstrated a significant improvement in number recognition accu-
racy in short video streams under uncertainties caused by noise and incompleteness. The second line
of evaluation demonstrated that the proposed heuristic outperforms humans in the post-processing
of recognition hypotheses. This indicates that it may be combined with state-of-the-art machine
learning approaches, which are typically not tailored to the task of object sequence recognition from a
limited number of frames of incomplete data recorded in a dynamic scene situation.

Keywords: multiple sequence alignment; object recognition; uncertainty in vision task; cognitive
economy

1. Introduction

The sources of noise and incompleteness in video streams are manifold and diverse.
Captured objects may be non-uniformly illuminated, physically damaged, obscured by dirt
or dust, etc. [1]. The human operator capturing a video stream may be negligent, physically
affected (e.g., suffering from a tremor), or working under time constraints, which in turn
reduces the number of quality image frames, etc. Thus, handling uncertainty caused by
noise and incompleteness in video streams represents an important research task. This
paper addresses a particular aspect of this research question—it introduces a cognitively
economical heuristic for multiple sequence alignment aimed at improving real-time object
recognition in short video streams with uncertainties.

Machine learning approaches have already been recognized to be able to outperform
human observers in visual recognition tasks with static frame input involving low signal-to-
noise ratio (e.g., noise robust convolutional neural networks for image classification [2–4],
etc.). However, these approaches are not necessarily tailored to the task of object sequence
recognition from a limited number of frames of incomplete data recorded in a dynamic
scene situation. One way to overcome this problem is to introduce a pre-processing
step devoted to image reconstruction from incomplete frames (cf. [5]). In contrast to
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this, the heuristic proposed in this paper is based on post-processing of the recognition
hypotheses and allows for avoiding time-consuming image reconstruction.

One of the assumptions underlying this heuristic procedure is that there is an object
recognition system that is independent and agnostic of the proposed approach. For the
purpose of easier representation, let S be a set of object classes that can be detected and
recognized by the given system. Without a loss of generality, the result of processing a
single image frame is a recognition hypothesis that can be represented as follows:

hi ≡ (si, ci)

≡ (si[0], ci[0]), (si[1], ci[1]), . . . , (si[m− 1], ci[m− 1]) ,
(1)

where

• m is a nonnegative integer (m ∈ N0),
• sequence si represents recognized objects, i.e.,

(∀ 0 ≤ k < m)(si[k] ∈ S) , (2)

and the order of elements in si is determined by the spatial order of recognized objects
in the image reference system,

• sequence ci contains the corresponding real-valued recognition confidences for objects
in si.

For example, recognition hypothesis

hi ≡ (si, ci) ≡ (4, 0.931), (7, 0.834), (7, 0.877) (3)

can be interpreted as follows: the sequence of recognized objects contains three digits, 4,
7, and 7 (i.e., sequence si), and their recognition confidences are 0.931, 0.834, and 0.877,
respectively, (i.e., sequence ci).

The second assumption is that multiple image frames are captured for each given
spatial scene; i.e., multiple recognition attempts are performed, each of which generates a
recognition hypothesis as described in Equation (1). For example, Figure 1 shows a set of
image frame segments derived from a video stream captured by a mobile phone application.
Each frame is processed separately by the external number recognition system introduced
in [1,6]. In Table 1, for each frame, a recognition hypothesis is provided.

Figure 1. A set of image frame segments derived from a video stream captured by a mobile phone
application. The size of fragments is 230× 52 pixels (with 300 pixels/inch). For the purpose of
presentation, images are scaled up.
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Table 1. For each frame given in Figure 1, a recognition hypothesis is provided. The digit after
the decimal point is intentionally discarded. The recognition confidences are normalized to the
range [0, 1].

Frame Recognition Hypotheses

h1 ≡ (s1, c1) ≡ (4, 0.931), (7, 0.834), (7, 0.877)
h2 ≡ (s2, c2) ≡ (4, 0.933), (6, 0.883), (7, 0.828), (7, 0.827)
h3 ≡ (s3, c3) ≡ (4, 0.907), (6, 0.880), (7, 0.829), (7, 0.840)
h4 ≡ (s4, c4) ≡ (4, 0.928), (6, 0.875), (7, 0.843), (7, 0.886)
h5 ≡ (s5, c5) ≡ (4, 0.921), (6, 0.883), (7, 0.851), (7, 0.791), (8, 0.640), (7, 0.781)
h6 ≡ (s6, c6) ≡ (4, 0.909), (6, 0.869), (7, 0.836), (7, 0.830)
h7 ≡ (s7, c7) ≡ (4, 0.907), (6, 0.861), (7, 0.833), (7, 0.882)
h8 ≡ (s8, c8) ≡ (4, 0.881), (8, 0.838), (7, 0.809), (7, 0.846), (8, 0.651), (7, 0.819)
h9 ≡ (s9, c9) ≡ (4, 0.891), (7, 0.813), (7, 0.860)

It is the task of the heuristic proposed in this paper to post-process a set of recognition
hypotheses and derive a single recognition result. To demonstrate the applicability of
the proposed heuristic, it is extrinsically evaluated in a specific, real-life scenario of the
automatic reading of electricity meters. The prototype system for multiple sequence align-
ment based on the proposed heuristic is engaged to post-process recognition hypotheses
obtained from the external number-recognition subsystem (introduced in [1,6]). However,
it should be noted that the prototype system for multiple sequence alignment is completely
agnostic and independent of the underlying number recognition subsystem. This is in line
with our commitment to introduce a heuristic that is not intended for a particular object
recognition system or a specific recognition task, but rather for addressing the more general
problem of the real-time recognition of spatially ordered objects in short video streams.
An additional characteristic of our approach is that it is cognitively economical [7] and has a
reduced computational complexity in comparison to optimal multiple sequence alignment.

The rest of this paper is organized as follows. Section 2 provides an overview of back-
ground and related work. The heuristic procedure is introduced in Section 3, and evaluated
and discussed in Section 4. Section 5 concludes the paper.

2. Background and Related Work

Uncertainty management in cognitive agents is an important research question in the
field of artificial intelligence [8,9]. This paper focuses on a particular aspect of this question,
i.e., uncertainties in automatic object recognition in short video streams and addresses this
research problem by means of multiple sequence alignment.

Under the alignment of two sequences si and sj over alphabet S, it is usually meant
that the sequences are modified by adding spaces, so that the resulting sequences ŝi and ŝj
are of equal length L. The value of the alignment is defined as

L−1

∑
k=0

score(ŝi[k], ŝj[k]) , (4)

where score(ŝi[k], ŝj[k]) is the score of two opposing symbols at position k in sequences ŝi
and ŝj, respectively. An optimal alignment minimizes the value given in Equation (4) [10].

One of the basic algorithms for finding the optimal alignment of two sequences is
related to the widely acknowledged edit distance (i.e., the Levenshtein distance) [11–13].
The standard minimum edit distance between two sequences is defined as the minimum
number of single-symbol edit operations (i.e., deletion of a symbol, insertion of a symbol,
and replacement of a symbol by another symbol) required to transform one sequence into
the other. In a more general case, the edit operations are weighted, and the calculation of



Axioms 2023, 12, 3 4 of 15

the minimum edit distance can be described as follows. Let si and sj be two sequences of
lengths m and n, respectively, over alphabet S:

si ≡ si[0], si[1], . . . , si[m− 1] ,

sj ≡ sj[0], sj[1], . . . , sj[n− 1] .
(5)

To align these sequences, a distance matrix D of dimension (m + 1) × (n + 1) is
generated. The symbol with index k in the first sequence, i.e., si[k], is assigned the row of
matrix D with index (k + 1), while the symbol with index l in the second sequence, i.e., sj[l],
is assigned the column of matrix D with index (l + 1). The first row and the first column of
matrix D are calculated as:

D[0, 0] = 0 ,

D[k, 0] = D[k− 1, 0] + d(si[k− 1]) ,

D[0, l] = D[0, l − 1] + i(sj[l − 1]) ,

(6)

and the rest of matrix as:

D[k, l] = min


D[k− 1, l] + d(si[k− 1])
D[k, l − 1] + i(sj[l − 1])
D[k− 1, l − 1] + r(si[k− 1], sj[l − 1])

 (7)

where 1 ≤ k ≤ m, 1 ≤ l ≤ n and

• d(si[k− 1]) is the cost of deletion of symbol si[k− 1],
• i(sj[l − 1]) is the cost of insertion of symbol sj[l − 1],
• r(si[k− 1], sj[l − 1]) is the cost of replacement of symbol si[k− 1] by symbol sj[l − 1].

The minimum edit distance between sequences si and sj is equal to the bottom right
cell of matrix D, i.e., D[m, n]. For example, if we set the costs of all single-symbol edit
operations to one, i.e.,

(∀ σ ∈ S) (d(σ) = 1) ,

(∀ σ ∈ S) (i(σ) = 1) ,

(∀ σ1, σ2 ∈ S) (r(σ1, σ2) =

{
0, if σ1 = σ2

1, otherwise
.

(8)

the minimum edit distance between sequences

s1 = 930, 107 and s2 = 9, 300, 171 (9)

is equal to 3; i.e., three single-symbol edit operations are required to transform one sequence
into the other. The underlying distance matrix is given in Figure 2a.

However, to find all optimal alignments between two sequences, it is necessary to
backtrace from cell D[m, n] to cell D[0, 0]. For each cell in D (except cell D[0, 0]), it is
necessary to keep track of which matrix cell participated in the calculation of the value of the
given cell (in accordance with Equations (5) and (6)). Each path starting at cell D[0, 0] and
ending at cell D[m, n] represents an optimal alignment. To continue the previous example,
there are six possible minimum-cost paths in matrix D, i.e., six optimal alignments between
sequences 930,107 and 9,300,171, as shown in Figure 2b–g. The minimum-cost paths are
marked with a gray background. Horizontal edges in a path determine insertions, vertical
edges determine deletions, and diagonal edges determine replacements. The alignments
are given under each corresponding matrix. Single-symbol edit operations of insertion,
deletion, and replacement are, respectively, denoted by letters i, d, and r. Spaces added to
sequences are represented by special symbol4 (i.e., a gap) not belonging to alphabet S.
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Figure 2. Illustration of the minimum edit distance algorithm. The costs of all single-symbol edit op-
erations are equal to one, cf. Equation (8). Abbreviations: i—insertion, d—deletion, r—replacement.

This edit distance algorithm can be generalized to multiple sequence alignment [14].
The basic score scheme applied is the SP-score, which considers the scores of all un-
ordered pairs of opposing symbols at position k in all aligned sequences [10]. The sequence
alignment is widely applied in computational biology (e.g., aligning protein sequences,
cf. [15,16]), computational linguistics (e.g., spell correction, speech recognition, machine
translation, information extraction, cf. [11]), and information security (e.g., impersonation
attacks detection in cloud computing environments, cf. [17]), but also in image process-
ing (e.g., scene detection in videos, online signature verification, cf. [18–21]). However,
there is a practical limitation related to the fact that the problem of finding an optimal
multiple sequence alignment is NP-hard [22]. The complexity of an optimal alignment of p
sequences of average length n, based on the dynamic programming approach described
above, is O(np).

To address the question of efficiency, a variety of heuristics were introduced [16,23]
(cf. also [24]). A popular heuristic in the field of computational biology is so-called
progressive alignment [16,25]. It works by first performing optimal pairwise sequence
alignments and then clustering the sequences, e.g., by applying the mBed or k-means
algorithms. In this paper, we introduce a novel cognitively economical heuristic procedure
for multiple sequence alignment that builds upon the idea of the progressive alignment.
At the methodological level, the novel aspects are as follows:

(i) The number of clusters is determined prior to the pairwise sequence alignment. Each
distinct maximum-length sequence in a set of recognition hypotheses is declared as a
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cluster representative. All other non-maximum-length sequences were then assigned
to the closest cluster representative, where the distance between two sequences was
calculated by means of the adapted edit distance algorithm.

(ii) The proposed adaptation of the edit distance approach is inspired by human working
memory limitations (cf. [26]). To reduce the “cognitive load” of our approach, we
consider only “economical” sequence alignments that are optimal in terms of the stan-
dard minimum edit distance approach and in which no space is inserted into longer
sequence. These two requirements for cognitive economy allow for the substantial
reduction of the number of sequences derived in the alignment process by means of
padding (as detailed in Section 3).

3. Heuristic for Multiple Sequence Alignment

In this section, we introduce a heuristic approach to multiple sequence alignment
intended for improving real-time object recognition in short video streams under uncer-
tainties. It includes two algorithms:

• The gap-minimum alignment algorithm, introduced and illustrated in Section 3.1, is
intended for alignment of two recognition hypotheses.

• The cluster-based voting algorithm, introduced and illustrated in Section 3.2, builds
upon the first algorithm and is intended for multiple recognition hypothesis alignment,
based on which a single recognition result is derived.

3.1. Gap-Minimum Two Sequence Alignment

Let hi and hj be two recognition hypotheses, as described in Equation (1), of lengths m
and n, respectively:

hi ≡ (si, ci)

≡ (si[0], ci[0]), (si[1], ci[1]), . . . , (si[m− 1], ci[m− 1]) ,

hj ≡ (sj, cj)

≡ (sj[0], cj[0]), (sj[1], cj[1]), . . . , (sj[n− 1], cj[n− 1]) ,

(10)

where si and sj are sequences over alphabet S, and ci and cj are sequences of the cor-
responding recognition confidence values. The cognitively economical idea underlying
the proposed two-sequence-alignment approach is that we consider only sequence align-
ments that are optimal in terms of the standard minimum edit distance approach in which
no space is inserted into the longer sequence. Thus, when two sequences of unequal
lengths are aligned, the longer sequence always remains unchanged, while |m− n| spaces
are “economically” inserted into the shorter sequence. The algorithm can be described
as follows.

Step 1.1: If sequences si and sj are of equal length, i.e., m = n, then no particular
alignment is performed, i.e.:

(∀ 0 ≤ k < m)(si[k] is opposed to sj[k]) , (11)

and the alignment process is terminated.
Step 1.2: Otherwise, if sequences si and sj are not of equal length, let us assume,

without loss of generality, that the length of si is less than the length of sj, i.e., m < n.
A distance matrix is generated, with the costs of all edit operations set to one, as described
in Section 2. Let P be a set of all optimal alignments of sequences si and sj derived from
the distance matrix. We recall that all alignments in set P are determined by means of the
minimal edit distance algorithm (i.e., the Levenshtein algorithm), and thus they contain a
minimal number of single-symbol edit operations (i.e., deletion, insertion, and replacement)
required to transform sequence si into sequence sj. In general, it is easy to show that set P
is never empty (i.e., it is always possible to find at least one alignment).
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Step 1.3: From set P, containing all optimal alignments of sequences si and sj, we
select only those alignments in which no space is inserted into longer a sequence. Let
Pr ⊆ P be a set of selected alignments. If Pr 6= ∅, it is declared that sequences si and
sj cannot be economically aligned, and the alignment process is terminated. Otherwise,
the algorithm proceeds to the next step.

Step 1.4: The value of each alignment p ∈ Pr is calculated as the sum of confidence
values of all symbols in a longer sequence sj that are opposed to a space, i.e.:

v(p) = v((ŝi, ĉi), (sj, cj)) =
n−1

∑
l=0

score(sj[l]) , (12)

where:

score(sj[l]) =

{
cj[l], if sj[l] is opposed to 4 ,
0, otherwise.

(13)

The alignment in Pr with a minimum value is selected as the most cognitively
economical alignment:

p̂ = argmin
p∈Pr

v(p) . (14)

The proposed gap-minimum two-sequence alignment algorithm is illustrated by the
following examples.

Example 1. Let us consider the alignment of the following recognition hypotheses:

hi ≡(si, ci)

≡(9, 0.822), (3, 0.765), (0, 0.746), (1, 0.815),

(0, 0.831), (7, 0.672) ,

hj ≡(sj, cj)

≡(9, 0.866), (3, 0.815), (0, 0.854), (0, 0.814),

(1, 0.753), (7, 0.829), (1, 0.786) ,

(15)

Set P, generated in Step 1.2, contains six alignments, i.e., A.1–A.6, shown in Figure 2b–g. Set
Pr, generated in Step 1.3, contains only three cognitively economical alignments (A.1–A.3) that
satisfy the condition that no space is inserted into longer sequence sj. The values of these alignments,
calculated in Step 1.4 based on confidence values provided in Equation (15), are:

v(A.1) = cj[2] = 0.854 ,

v(A.2) = cj[3] = 0.814 ,

v(A.3) = cj[6] = 0.786 .

(16)

The alignment A.3 has the minimum value and thus represents the most cognitively economical
alignment:

ĥi ≡(ŝi, ĉi)

≡(9, 0.822), (3, 0.765), (0, 0.746), (1, 0.815),

(0, 0.831), (7, 0.672), (4, 0.5) ,

hj ≡(sj, cj)

≡(9, 0.866), (3, 0.815), (0, 0.854), (0, 0.814),

(1, 0.753), (7, 0.829), (1, 0.786) ,

(17)
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In the selected alignment, an initially longer recognition hypothesis hj remains unchanged,
while initially, the shorter recognition hypothesis hi was transformed to ĥi by inserting a space at
the end of sequence si.

It should be noted that the confidence value of a space is set to 0.5 (cf. Equation (17),
for the following reason. In the external recognition system [1] applied in this example,
digit recognition confidence values are normalized in the [0, 1] range, and an image segment
is considered as potentially containing a digit only if its recognition confidence is beyond
the threshold value of 0.5. In the general case, the confidence value of a space is set
to the recognition confidence threshold value. By doing so, a space is considered less
significant in the post-clustering voting process described in Section 4.2 than a potentially
recognized digit.

Example 2. It should be noted that in the proposed approach, it is possible that two sequences cannot
be economically aligned. Let us consider the alignment of the following recognition hypotheses:

hi ≡(si, ci) ≡ (8, ci[0]), (5, ci[1]), (7, ci[2]) ,

hj ≡(sj, cj) ≡ (5, cj[0]), (7, cj[1]), (3, cj[2]), (9, cj[3]) ,
(18)

where the confidence values of particular digits are not specified, since they are irrelevant to this
example. The distance matrix generated in Step 1.2 is given in Figure 3. It can be observed that
there is only one optimal alignment in set P and that it does not satisfy the condition that no
space is inserted into longer sequence sj. Thus, set Pr is empty, i.e., sequences si and sj cannot be
economically aligned.

Figure 3. Distance matrix and alignment in Example 2.

3.2. Cluster-Based Multiple Sequence Alignment

Let H be a multiset of nonempty recognition hypotheses produced by an external
recognition system, i.e.,

H = {h1, h2, . . . , hq} = {(s1, c1), (s2, c2), . . . , (sq, cq)}
= {((s1[0], c1[0]), . . . , (s1[m1 − 1], c1[m1 − 1]))

((s2[0], c2[0]), . . . , (s2[m2 − 1], c2[m2 − 1])),

. . . ,

((sq[0], cq[0]), . . . , (sq[mq − 1], cq[mq − 1]))} ,

(19)

where g ≥ 1. It is important to note that H is defined as a multiset, i.e., a bag of recognition
hypotheses, and not just as a set, in order to emphasize that it may include multiple
instances for each of the recognition hypotheses it comprised. The proposed cluster-based
multiple sequence alignment can be described as follows.

Step 2.1: Let Ht be a multiset containing recognition hypotheses from H with the
maximum length, i.e.,

Ht = {hi ≡ (si, ci) | (hi ∈ H) ∧ (|si| = max
(s,c)∈H

|s|)} . (20)
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Each hypothesis in Ht represents one cluster. If Ht = H (i.e., if all recognition hy-
potheses in H are of equal length), each of the |H| clusters contains exactly one recognition
hypothesis from H, and the algorithm jumps to Step 2.3. Otherwise, the algorithm proceeds
to Step 2.2.

Step 2.2: If |Ht| < |H|, each recognition hypothesis from set H \ Ht is either assigned
to exactly one cluster or discarded. More particularly, each hypothesis h ∈ H \ Ht is inde-
pendently aligned—by means of cognitively economical gap-minimum sequence alignment
introduced in Section 3.1—to all hypotheses from set Ht, producing a set of alignments:

P(h) = {(ĥ, ht) | ht ∈ Ht} . (21)

If P(h) = ∅, recognition hypothesis h cannot be economically aligned to any of
hypotheses from Ht, and it is discarded. Otherwise, if P(h) 6= ∅, the alignment from P(h)
with minimum value is selected:

(ĥ, ht) = argmin
p∈P(h)

v(p) (22)

(cf. also Equations (12) and (13)), and hypothesis ĥ (obtained by transforming observed
recognition hypothesis h in the scope of the selected alignment) is assigned to the cluster
represented by recognition hypothesis ht. In a special case when there are multiple opti-
mal instances for hypothesis ht in multiset Ht, only one of them is randomly selected in
Equation (22).

Step 2.3: It is easy to show that all recognition hypotheses (some of them being
transformed by adding spaces) assigned to the clusters are of equal length Lmax = max

(s,c)∈H
|s|.

In this step, they are all arrayed in rows, each of which contains Lmax columns, and the
order or rows is irrelevant. A new sequence s f containing Lmax symbols—one for each
column—is generated by means of voting. For each column, a symbol from set S ∪ {4}
with the maximum sum of confidence values in the given column is selected. The final
recognition result is obtained by removing all spaces from s f .

Example 3. To illustrate the proposed algorithm, we consider the set of recognition hypotheses
given in Table 1. The algorithm execution is summarized in Table 2.

Table 2. Illustration of the cluster-based multiple-sequence alignment algorithm. The recognition
confidence values of the digits are given in Table 1. The recognition confidence value of a space is set
to 0.5.

Step 2.1 Step 2.2 Step 2.3
Hypotheses Cluster Hypotheses Cluster Arraying

h1 477 ? ĥ1 44474 7 C8 4 4 4 7 4 7
h2 4677 ? ĥ2 467744 C5 4 6 7 7 4 4
h3 4677 ? ĥ3 467744 C5 4 6 7 7 4 4
h4 4677 ? ĥ4 467744 C5 4 6 7 7 4 4
h5 467787 C5 ĥ5 467787 C5 4 6 7 7 8 7
h6 4677 ? ĥ6 467744 C5 4 6 7 7 4 4
h7 4677 ? ĥ7 467744 C5 4 6 7 7 4 4
h8 487787 C8 ĥ8 487787 C8 4 8 7 7 8 7
h9 477 ? ĥ9 44474 7 C8 4 4 4 7 4 7

↓ ↓ ↓ ↓ ↓ ↓
Voting: 4 6 7 7 4 7

Final result: 46777

In the given set, there are two recognition hypotheses of the maximum length, h5 and
h8. Therefore, there are two clusters in Step 2.1, which we refer to as C5 and C8, respectively.
In Step 2.2, recognition hypotheses h1 and h9 are economically aligned to h8 and thus
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assigned to cluster C8, while recognition hypotheses h2, h3, h4, h6, and h7 are aligned to
h5 and assigned to cluster C5. After the arraying, voting, and removing spaces from the
voting result in Step 2.3, the final recognition result is obtained: 46,777.

It is important to note that although none of the initial recognition hypotheses repre-
sents the number given in Figure 1, the proposed algorithm generated the correct recog-
nition result (we recall that the digit after the decimal point in Figure 1 is intentionally
discarded).

4. Evaluation and Discussion

The evaluation of the introduced heuristic procedure is performed along two lines.
The first evaluation line is aimed at demonstrating that the proposed approach improves
real-time object recognition in video streams under uncertainties. Thus, we perform an
extrinsic evaluation of the approach in real-life settings (cf. Section 4.1). The second
evaluation line is aimed at comparing the proposed approach to the post-processing of
recognition hypotheses with human performance (cf. Section 4.2).

4.1. Extrinsic Evaluation

To perform an extrinsic evaluation of the introduced heuristic, it was embedded in an
Android-based number recognition system intended for the automatic reading of electricity
meters. This recognition system integrates two subsystems that are independent of each
other: (i) the number recognition subsystem introduced in [1] that processes each image
frame separately and (ii) the post-processing subsystem based on the proposed approach
to multiple sequence alignment. For each rate of an electricity meter, a set of image frames
is extracted. The first subsystem generates one recognition hypothesis per image frame.
The second subsystem post-processes the recognition hypotheses obtained from the first
subsystem, by means of cognitively economical multiple sequence alignment described in
this paper, and derives a single recognition result.

Two healthy subjects used this integrated number recognition system to automatically
read electricity meters in real-life conditions. The experimental settings were designed to
reduce the confounding variables:

• Hardware and software: the subjects used Android-based mobile phones of the same
type and with the same software settings.

• Subjects: the subjects were of the same gender (male), and comparable in height and
expertise in recording electric meters with an Android-based mobile phone. They did
not have any insight into the post-processing results.

• Electricity meters: both subjects recorded the same set of 100 electricity meters, includ-
ing 5 m with one rate, and 95 m with two rates.

• Ambient: to achieve the same ambient conditions, each electricity meter was recorded
first by one subject and then immediately after by another.

• Recording span: when reading an electricity meter, the digit recognition system was
set to record until ten image frames were recorded or the recording time reached three
seconds.

The image frame corpora are described in Table 3. The subjects recorded the same
set of electricity meters, but image frames of one particular electricity meter rate were
discarded for both the subjects, while image frames of two electricity meters are missing in
Subject 2. Thus, Subject 1 captured 2011 image frames that can be divided into 194 disjoint
sets (each representing a particular electricity meter rate). The average number of image
frames per set for this subject is 10.366 (with standard deviation of 2.109). Subject 2 captured
1873 image frames that can be divided into 190 disjoint sets. The average number of image
frames per set for this subject is 9.858 (±1.538). In total, the corpus contains 3884 image
frames, which can be divided into 384 sets. The average number of image frames per set
is 10.116 (±1.866). In the text below, we refer to the corpora of image frames captured by
Subject 1 and Subject 2 as Corpus 1 and Corpus 2, respectively.
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The details on the recognition accuracy at the number level are also provided in Table 3.
It is important to note that neither of the subsystems had any predefined expectation in
terms of the number of digits in a correct recognition hypothesis. The external number
recognition system correctly recognized 48.15% (i.e., 1870 of 3884) of image frames: 50.32%
accuracy was obtained for Corpus 1 and 45.81% for Corpus 2. This low recognition accuracy
is caused by significant noise and incompleteness contained in the image frames. As a
small illustration of the corpus quality, we point out that the average root-mean-square
contrast [27] of images in the corpora is relatively low at 0.218, with standard deviation
of 0.041. However, it is important to note that such a low-quality image corpora was
intentionally adopted to increase the recognition uncertainty and to confront the post-
processing subsystem, which is the actual object of the evaluation, with a real-life challenge.

Table 3. Image frame corpus and recognition accuracy.

System Image Frames Corpus 1 Corpus 2 Total

External number # image frames 2011 1873 3884
recognition system [1] average root mean square contrast 0.227 (±0.040) 0.208 (±0.039) 0.218 (±0.041)

# correctly recognized image frames 1012 (50.32%) 858 (45.81%) 1870 (48.15%)
Proposed post-processing # hypothesis sets 194 190 384
subsystem average # hypotheses per set 10.366 (±2.109) 9.858 (±1.538) 10.116 (±1.866)

average # correct hypotheses per set 5.201 (±3.766) 4.437 (±3.647) 4.823 (±3.727)
# correctly aligned recognition result 137 (70.62%) 125 (65.79%) 262 (68.23%)

It can be observed that the proposed heuristic procedure for alignment of recognition
hypotheses significantly increased the recognition accuracy, from 48.15%, obtained prior
to the embedding of the introduced heuristic procedure, to 68.23%, obtained after the
embedding. In total, 68.23% (i.e., 262 of 384) of hypothesis sets were correctly aligned
(70.62% accuracy obtained for Corpus 1, and 65.79% for Corpus 2). To additionally describe
the performance, we make the following points (summarized in Table 4):

• A total of 86 of 384 recognition hypothesis sets do not contain correct recognition
hypotheses (39 sets in Corpus 1 and 47 sets in Corpus 2). However, the hypotheses
from seven of these sets were correctly aligned; i.e., the correct recognition results
were derived (in 1 of 39 sets in Corpus 1 and 6 of 47 sets in Corpus 2). One of these
sets and the derivation of the recognition result are presented above in Example 3.

• A total of 114 of 384 sets contain at least one correct recognition hypothesis, but the
number of correct hypotheses in each of these sets is less than or equal to the half of
the number of hypotheses in a given set (59 sets in Corpus 1 and 55 sets in Corpus
2). The correct recognition results were derived for 72 of these sets (40 of 59 sets in
Corpus 1 and 32 of 55 sets in Corpus 2).

• A total 184 of 384 sets contain correct recognition hypotheses, and the number of
correct hypotheses in each of these sets is greater than the half of the number of
hypotheses in a given set (96 sets in Corpus 1 and 88 sets in Corpus 2). The correct
recognition results were derived for all these sets except one (from Corpus 2).

Table 4. An overview of image frame sets.

# Correct Recognition Corpus 1 Corpus 2 Total
Hypotheses in a Set # Sets # Correctly Aligned # Sets # Correctly Aligned # Sets # Correctly Aligned

0 39 1 47 6 86 7
≤half of the set, 6=0 59 40 55 32 114 72
>half of the set 96 96 88 87 184 183
Total 194 137 190 125 384 262

To evaluate the recognition performance at the digit level, the confusion matrices for
Corpora 1 and 2 are given in Tables 5 and 6, respectively. The results can be summarized as
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follows. In Corpus 1, 93.50% digits are correctly recognized, 2.99% incorrectly recognized,
and 3.51% not detected. In Corpus 2, 92.73% digits are correctly recognized, 4.21% incor-
rectly recognized, and 3.06% not detected. It can be also derived that, in total, 93.10% digits
are correctly recognized, 3.60% incorrectly recognized, and 3.28% not detected.

Table 5. Confusion matrix for Corpus 1 (INS—segment incorrectly recognized as a digit; ND—digit
not detected).

0 1 2 3 4 5 6 7 8 9 ND Total

0 92 1 0 0 0 0 0 0 3 0 3 99
1 0 90 0 0 0 0 0 0 0 0 3 93
2 0 0 94 0 1 0 0 0 0 0 6 101
3 0 2 0 115 0 0 0 0 0 2 2 121
4 0 1 0 0 101 0 0 0 0 0 3 105
5 0 1 0 1 0 74 1 0 0 0 1 78
6 4 0 0 1 0 1 80 0 2 0 6 94
7 0 1 0 0 0 0 0 86 4 0 4 95
8 1 0 0 0 0 0 0 1 89 0 4 95
9 0 0 0 1 0 0 0 0 0 85 2 88

INS 0 5 0 1 1 0 1 1 5 0 – 14

Table 6. Confusion matrix for Corpus 2 (INS—segment incorrectly recognized as a digit; ND—digit
not detected).

0 1 2 3 4 5 6 7 8 9 ND Total

0 88 2 0 2 0 0 0 0 2 0 4 98
1 0 92 0 0 0 0 0 0 0 0 1 93
2 0 0 89 0 4 0 0 4 0 0 2 99
3 0 0 0 103 0 0 0 0 0 1 6 110
4 0 0 0 0 99 0 0 1 0 0 5 105
5 1 0 0 4 0 70 0 0 0 0 1 76
6 6 0 0 1 0 3 78 0 1 0 4 93
7 0 0 1 0 1 0 0 88 1 0 1 92
8 1 0 0 0 0 0 0 0 93 0 3 97
9 2 0 0 0 0 0 0 0 2 80 2 86

INS 0 12 1 5 1 0 2 2 10 9 – 42

4.2. Comparison to Human Performance

In the second evaluation phase, the proposed heuristic procedure is compared to
human performance in the post-processing of recognition hypotheses. For this purpose,
an additional naïve healthy subject was given the same 384 sets of recognition hypotheses to
which the post-processing subsystem was confronted in the first evaluation phase. The sub-
ject did not know how many digits were expected in a correct recognition hypothesis.
For each of the given sets, the task of the subject was to try to derive the correct recognition
result. The recognition hypotheses were presented on a screen. Paper and pencil were
available to the subject. The time was not limited.

The results of the comparative analysis are summarized in Table 7. For Corpus 1,
the human and the system had the same recognition accuracy. They both derived correct
results for 137 of 194 sets, with the overlapping of 129 sets. In addition, of 194 sets in Corpus
1, the human and the system derived the same results for 157 sets. For Corpus 2, the system
outperformed the human. Of 190 sets, the system derived the correct results for 125 sets,
and the human for 121 sets, with the overlapping of 114 sets. In addition, of 190 sets in
Corpus 2, the human and system derived the same results for 141 sets. In total, the human
and the system derived the same results for 77.60% of all recognition hypothesis sets.

The difference in performance can be explained as follows. Table 3 shows that the
average number of correct recognition hypotheses per set is lower in Corpus 2 (5.201± 3.766)
than in Corpus 1 (4.437± 3.647), most probably due to the recording style of Subject 2.
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In line with this, in the last rows of Tables 5 and 6 it can be observed that the number of
image segments that were incorrectly recognized as digits by the underlying recognition
system is greater for Corpus 2 than for Corpus 1. Thus, in Corpus 2 both the human and
the system were confronted with more recognition hypotheses containing false-positive
segments. We recall that neither of them knew how many digits are expected in a correct
recognition hypothesis. The system performed better due to its cognitively economical
design. The longer-than-necessary recognition hypotheses are not additionally extended by
spaces (i.e., gap-minimum alignment), and the false-positive segments are more effectively
eliminated in the post-clustering voting.

Table 7. Comparative analysis (C1—Corpus 1; C2—Corpus 2).

# Sets # Correctly Derived Results Total
Overlap

Heuristic Human Overlap

C1 194 (100%) 137 (70.62%) 137 (70.62%) 129 (66.49%) 157 (80.93%)
C2 190 (100%) 125 (65.79%) 121 (63.68%) 114 (60%) 141 (74.21%)

Total 384 (100%) 262 (68.23%) 258 (67.19%) 243 (63.28%) 298 (77.60%)

5. Conclusions

In this paper, we introduced a heuristic approach to multiple sequence alignment
under uncertainties. The proposed approach was cognitively economical to the extent that
it accounted for human working memory limitations and thus had a reduced computational
complexity in comparison to the optimal multiple sequence alignment. On the other hand,
its relevance was experimentally confirmed.

The evaluation was performed along two lines. First, an extrinsic evaluation con-
ducted in real-life settings demonstrated that the proposed approach improves the accuracy
of number recognition in short video streams under uncertainties caused by noise and
incompleteness. At the number level (i.e., sequence of digits), the recognition accuracy
of a given external recognition system was increased from 48.15%, obtained prior to the
embedding of the introduced heuristic procedure, to 68.23%, obtained after the embedding.
At the digit level, the improved performance is reflected through the recognition accuracy
of 93.10%.

In the second evaluation phase, the proposed heuristic procedure was compared to
human performance in the post-processing of recognition hypotheses. A naïve subject was
given the same 384 sets of recognition hypotheses to which the post-processing subsystem
was confronted in the first evaluation phase. For each of the given sets, the task of the
subject was to try to derive the correct recognition result. It was demonstrated that the
proposed approach outperformed the human. This indicates that the proposed heuristic
for post-processing of the recognition hypotheses may be combined with machine learning
approaches, which are typically not tailored for the task of object sequence recognition
from a limited number of frames of incomplete data recorded in a dynamic scene situation.
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