
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/234815166

An object-oriented software implementation of a modified artificial bee

colony (ABC) algorithm

Article · June 2010

CITATIONS

8
READS

612

3 authors:

Nebojsa Bacanin

Singidunum University

422 PUBLICATIONS 8,721 CITATIONS

SEE PROFILE

Milan Tuba

Singidunum University

254 PUBLICATIONS 6,684 CITATIONS

SEE PROFILE

Ivona Brajevic

University Business Academy in Novi Sad

40 PUBLICATIONS 1,028 CITATIONS

SEE PROFILE

All content following this page was uploaded by Nebojsa Bacanin on 09 May 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/234815166_An_object-oriented_software_implementation_of_a_modified_artificial_bee_colony_ABC_algorithm?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/234815166_An_object-oriented_software_implementation_of_a_modified_artificial_bee_colony_ABC_algorithm?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nebojsa-Bacanin?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nebojsa-Bacanin?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Singidunum-University?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nebojsa-Bacanin?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Milan-Tuba?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Milan-Tuba?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Singidunum-University?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Milan-Tuba?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ivona-Brajevic?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ivona-Brajevic?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-Business-Academy-in-Novi-Sad?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ivona-Brajevic?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nebojsa-Bacanin?enrichId=rgreq-b6838ddd06f9af41b6bae63572816c49-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgxNTE2NjtBUzo3NTY1MDQ0MzMwMjUwMjRAMTU1NzM3NjEyMDYyMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

An Object-Oriented Software Implementation

of a Modified Artificial Bee Colony (ABC) Algorithm

 Nebojsa BACANIN Milan TUBA Ivona BRAJEVIC

 Faculty of Computer Science Faculty of Computer Science Faculty of Mathematics

 University Megatrend Belgrade University Megatrend Belgrade University of Belgrade

 Bulevar umetnosti 29 Bulevar umetnosti 29 Studentski trg 16

 SERBIA SERBIA SERBIA

 nbacanin@megatrend.edu.rs tubamilan@ptt.rs ivona.brajevic@googlemail.com

Abstract: - This paper describes an object-oriented software system for continuous optimization by a modified

artificial bee colony (ABC) metaheuristic. Karaboga’s ABC algorithm was successfully used on many

optimization problems and there is also a corresponding program in C. We implemented a modified version in

C# which is easier for maintenance since it is object-oriented and which uses threads and significantly increases

execution speed on multicore processors. The application includes flexible GUI (graphical user interface) and it

was successfully tested on standard benchmark problems and one additional problem.

Key-Words: - Artificial Bee Colony, Optimization Metaheuristic, Software System, Swarm Intelligence

1 Introduction
A huge number of practical problems in industry

and business are in the class of intractable

combinatorial (discrete) or numerical (continuous or

mixed) optimization problems. There are many

traditional methods for continuous optimization and

many heuristics for discrete problems.
Several modern metaheuristic algorithms

(typically high-level strategies which guide an

underlying subordinate heuristic to efficiently

produce high quality solutions and increase their

performance) that apply to both domains have been

developed for solving such problems [1]. They

include population based, iterative based, stochastic,

deterministic and other approaches.

The algorithm that is working with a set of

solutions and trying to improve them is called

population based. Population based algorithms can

be classified by the nature of phenomenon simulated

by the algorithm into two groups: evolutionary

algorithms (EA) and swarm intelligence based

algorithms.

Research branch that models the population of

interacting agents is swarm intelligence. Flocking of

birds and schooling of fish, ant colonies, bee’s

behaviour, immune systems are few examples of

swarm systems. Swarm intelligence systems are

typically made up of a population of self-organized

individuals interacting locally with one another and

with their environment [2]. Even though there is no

centralized component that controls the behaviour of

individuals, local interactions between all

individuals often lead to the emergence of global

behaviour. These characteristics of swarms inspired

huge number of researchers to implement such

behaviour in computer software for optimization

problems.

A lot of swarm intelligence algorithms have been

developed. For example, Ant Colony Optimization

(ACO) is a technique that is quite successful in

solving many combinatorial optimization problems.

The inspiring source of ACO was the foraging

behaviour of real ants which enables them to find

shortest paths between food sources and their nests.

While working from their nests to food source, ants

deposit a substance called pheromone. Paths that

contain more pheromone concentrations are chosen

with higher probability by ants than those that

contain lower pheromone concentrations.

Particle swarm optimization (PSO) algorithm is

another example of swarm intelligence algorithms.

PSO simulates social behaviour of bird flocking or

fish schooling. PSO is a stochastic optimization

technique which is well adapted to the optimization

of nonlinear functions in multidimensional space

and it has been applied to several real-world

problems. Improved version of the PSO algorithm is

Particle Swarm Inspired Evolutionary Algorithm

(PS-EA) which is a hybrid model of EA and PSO.

PS-EA incorporates PSO with heuristics of EA in

the population generator and mutation operator

while retaining the workings of PSO.

Several metaheuristics have been proposed to

model the specific intelligent behaviour of honey

RECENT ADVANCES in NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING

ISSN: 1790-5109 179 ISBN: 978-960-474-195-3

bee swarms [3], [4], [5]. Bee colony is a dynamical

system which gathers information from the

environment and adjusts its behaviour in accordance

to it. The bee swarm intelligence was used in the

development of artificial systems aimed at solving

complex problems in traffic and transportation [3].

That algorithm is called Bee Colony Optimization

Meta-heuristic (BCO), which is used for solving

deterministic combinatorial problems, as well as

combinatorial problems characterized by uncertainty

[3]. Another approach inspired by the behaviour of

real bees is Bees Swarm Optimization (BSO) which

is adapted for solving maximum weighted

satisfiability (max-sat) problem.

In this paper, we present a modification of the

Artificial Bee Colony (ABC) algorithm proposed by

Karaboga and Bastuk [6]. We developed our ABC

software for solving combinatorial and numeric

optimization problems in C# programming

language.

2 ABC algorithm
The ABC algorithm is relatively new population

based meta-heuristic approach firstly proposed by

Karaboga [7], and lately developed by the

Karaboga and Bastuk [6], [8], [9]. In ABC

algorithm, possible solution of the problem is

represented by the food source. Quality of solution

is indicating by the amount of nectar amount of a

particular food source.

In ABC algorithm, there are three types of

artificial bees (agents): employed, onlookers and

scouts [8]. Half of the colony are employed bees.

The relation between employed bee and the food

source is one-to-one, that means that there is only

one employed bee per each food source. If a food

source becomes abandoned, mapped employed bee

to that food source becomes a scout, and as soon as

it finds a new food source, it again becomes

employed. Main steps of the algorithm are given

below [6]:

Initialize.

Repeat

Place the employed bees on the food sources in

the memory;

Place the onlooker bees on the food sources in

the memory;

Send the scouts to the search area for

discovering new food sources.

Until (requirements are met).

ABC algorithm, as an iterative algorithm, starts by

associating each employed bee with randomly

generated food source (solution) [10]. In each

iteration, each employed bee discovers a food

source in its neighbourhood and evaluates its nectar

amount (fitness). If fitness of new food source is

better than the fitness of the old one, employed bee

moves to the new source, otherwise it retains the old

one. After completing this process, employed bees

share food source fitness information with the

onlookers. Onlookers select a food source (i) with a

probability that is proportional to the fitness of the

food source, using the following expression:

∑

 (1)

where fi is the fitness of the solution i, and m is the

total number of food sources. From the expression,

it is obvious that good food sources will get more

onlookers than the bad ones. When all onlookers

finished food source selection process, each of them

search for the food source in the neighbourhood of

his chosen food source and computes its fitness. The

best among all of this food sources will be the new

location of the food source i. In ABC algorithm, at

each cycle at most one scout goes outside for

searching a new food source, and the number of

employed and onlooker bees were equal.

In this algorithm, there is also a trial parameter.

If a solution (food source) does not improve for a

predetermined number of iterations which is a trial

value, then that food source is abandoned by its

associated employed bee, and bee becomes a scout.

After the new location of each food source is

determined, another iteration of ABC algorithm

begins. The whole process is repeated until the

termination condition is met.

Particularly interesting is the process of

determining food source in the neighbourhood of a

certain food source. Neighbourhood food source has

being generated by altering the value of one

randomly chosen solution parameter and keeping

other parameters unchanged. This can be done by

adding to the chosen parameter the product of a

uniform variable in [-1,1] and the difference in

values of this parameter for this food source and

some other randomly chosen food source [10]. Let

us notate the solution xi, and let us suppose that the

solution xi has d parameters with values xi1, xi2 .. .xid,

etc. In order to find a solution x0 in the

neighbourhood of xi, a solution parameter j, and

another solution xk are selected on random basis.

Except for the value of the chosen parameter j, all

other parameter values of xi` are the same as in the

solution xi, for example, xi`=(xi1,xi2,....xi(j-

1),xij,xi(j+1)...xid). The value of xij parameter in xi`

RECENT ADVANCES in NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING

ISSN: 1790-5109 180 ISBN: 978-960-474-195-3

solution is computed using the following

expression:

xij`=xij+u(xij-xkj) (2)

where u is a uniform variable in [-1,1].

From the Equation (2) we can see that if the

difference between the parameters of the xij and xkf

decreases, the perturbation on the position xij

decreases too. Thus, as the search approaches to the

optimum solution in the search space, the step

length is adaptively reduced.

If a parameter produced by this operation

exceeds its predetermined limit, the parameter can

be set to an acceptable value. In this work, the value

of the parameter exceeding its limit is set to its limit

value.

3 ABCapp Software
We`ve developed our software for ABC algorithm

called ABCapp. We could use existing Karaboga`s

software [6], [8], [9], but we chose to develop a new

version because we wanted to implement few

improvements. Firstly, in order to make algorithm

execute faster, we used multiple threads. Each

algorithm`s run executes within a different thread,

so it runs much faster. Each thread puts best result

in an array length of number of runs. Then, we

calculate mean result according to the values stored

in this array. Threads do not make conflicts with

each other, they execute independently. We noticed

great performance increase when we run our

software on multiple core processors because each

thread execute on different core in parallel way.

Speed test will be presented in section 4.1.

Secondly, our software is object-oriented. With

object-oriented concept, software scalability and

maintenance is much easier. So, if we want to

implement new logic for different optimization

problems, it will take substantially less time.

 We chose to develop ABCapp in C# because of

its many advantages over C, C++ and Java. We

prefer C# over C even though C is faster. With C#

we could gain more control over ABC algorithm

execution. Some of C# advantages which made us

chose this programming language are:

 Usually it is much more efficient than Java and

runs faster.

 CIL (Common (.NET) Intermediate Language)

is a standard language, while java byte codes are

not.

 It has more primitive types (value types),

including unsigned numeric types.

 Indexers let you access objects as if they were

arrays.

 Conditional compilation.

 Simplified multithreading.

 Operator overloading. It can make development

a bit trickier but they are optional and

sometimes very useful.

 Limited use of pointers if you really need them,

as when calling unmanaged (native) libraries

which does not run on top of the virtual machine

(CLR).

 More clean events management using delegates.

We developed our software using Visual Studio

2008 environment and .NET Framework 3.5. A

framework is a special kind of software library that

is similar to an application program interface (API)

in the class of packages that make possible faster

development of applications. Two main components

of .NET Framework are Common Language

Runtime (CLR) and Class Library. CLR is the .NET

runtime environment responsible for program

execution management and for providing container

services—debugging, exception management,

memory management, profiling, and security. The

CLR provides a managed environment for code

execution, which makes code more secure by

protecting the code from doing things such as illegal

memory access operations, manages memory for the

program and adds additional runtime support not

available in native programs, like garbage

collection. The .NET class libraries are pre-written

classes that provide a rich assortment of pre-defined

code.

 So, using previously described environment

makes our code more robust, errorless and

performance is much better.

Implemented ABC algorithm employs four

different selection processes:

(1) a global selection process used by the

onlooker bees for discovering promising regions

(2) a local selection process carried out in a

region by the artificial employed bees and the

onlookers depending on local information (in

case of real bees,

(3) a local selection process called greedy

selection process carried out by all bees in that if

the nectar amount of the candidate source is

better than that of the present one, the bee forgets

the present one and memorizes the candidate

source. Otherwise, the bee keeps the present one

in the memory.

(4) a random selection process carried out by

scouts [8].

RECENT ADVANCES in NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING

ISSN: 1790-5109 181 ISBN: 978-960-474-195-3

There are a large number of connections between

classes in our program. ABC algorithm cannot be

used in its basic form for all function optimization

problems. So, we created abstract class

BeesAbstract which is inherited by problem specific

classes. BeesAbstract has the following methods:

CalculateFitness, MemorizeBestSource, init, initial,

SendEmployedBees,CalculateProbabilities,SendOnl

ookerBees, SendScoutBees, run. These methods,

which will be briefly described, form the basis of

ABC metaheuristics and they are similar to those

used by Karaboga and Bastuk in their software [6],

[8], [9]. CalculateFitness calculates the fitness of a

solution. MemorizeBestSource memorizes best

solution found so far. Init function initialiezes

varbiales and counters of the food sources

(solutions). Variables are initialized within ranged

defined by the user. Initial initializes food sources

(solutions) at the beginning of the process.

SendEmployedBees executes employed bee phase.

CalculateProbabilities calculate probabilities which

are important because a food source is chosen with

the probability which is proportioal to its quality.

SendOnlookerBees and SendScoutBees executes

onlooker and scout bee phase respectively. Run is

specific method used for implementing multiple

thread functionality into our software. In the Run

method, previously described functions are being

executed. Pseudo-code for Run method is given in

Figure 1.

Initialize

MemorizeBestSource

Repeat

 SendEmployedBees

 CalculateProbabilities

 SendOnlookerBees

 MemorizeBestSource

 SendScoutBees

Until max iterations are met

Fig.1: Pseudocode for Run method

Screenshot of basic Graphical user interface (GUI)

of ABCapp can be seen in Figure 2. As we can see

from the Fig.2, user can adjust multiple parameters

for ABC algorithm. Parameters are divided into two

groups: ABC control parameters and problem

specific parameters.

Control parameters are:

 Bee Num NP is number of bees in the colony

(employed bees plus onlooker bees).

 Limit controls the number of trials to improve

certain food source. If a food source could not

be improved within defined number of trial, it is

abandoned by its employed bee.

 Max Cycle defines the number of cycles for

foraging. This is a stopping criterion.

Problem specific parameters are:

 Param Num D is the number of parameters of

the problem to be optimized.

 Runtime defines the number of times to run the

algorithm.

 Lower bound is lower bound of problem

parameters.

 Upper bound is upper bound of problem

parameters.

Fig. 2: Screenshot of ABCapp GUI

In the results text area, we can see results for each

algorithm`s run, and below, mean results of all runs

is shown. Button details give us additional

information about the function to be optimized

(Fig.3 and Fig.4).

Fig. 3: Results for Sphere function

Fig. 4: Additional information about selected

function

RECENT ADVANCES in NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING

ISSN: 1790-5109 182 ISBN: 978-960-474-195-3

We used six benchmark functions:

 Sphere

 Rosenbrock

 Griewank

 Rastrigin

 Schwefel

 Marshallian demand function

Sphere function`s value is 0 at its global minimum

is (0,0,…,0). Definition:

f(x)=∑

Rosenbrock function has a value 0 at its global

minimum is (1,1,…,1). Definition:

f(x) = ∑ [

]

Griewank`s value is 0, and its global minimum is

(0,0,…,0). Definition:

f(x) = ∑

 ∏

 √

Rastrigin has value 0, and global minimum

(0,0,…,0) . Definition:

f(x) = 10n + ∑

Fifth function is Schwefel whose value is 0 at its

global minimum (420.9867,420.9867,…, 420.9867).

Definition:

f(x) = 418.9829n -∑

 √

Sixth benchmark function is Marshallian demand

function. This function specifies what the consumer

would buy in each price and wealth situation,

assuming it perfectly solves the utility maximization

problem. Function is shown of Figure 5.

Fig 5: Marshallian demand function

The chosen mathematical model of Marshallian

demand function must be the most appropriate

approximation of expressed dependency between

price flow and demand for observed product. Wide

range of mathematical functions can be used for the

model, such as: linear, quadratic, exponential, etc.

We used
bapq  , where p is price, and q is

demand. Parameters a and b should be designated

according to previously known pairs),(ii qp ,

where i=1,2,...n. Parameters a,b,c,... are for the most

part calculated by using method of least squares.

In this example, we are using function:

2

1

)(),(



n

i

b
ii apqbaF ,

where we are trying to calculate parameters a and b

using ABC algorithm in order to minimize the

function value. The best result achieved using

method of least squares is 57,046264. The results

gained with ABC algorithm are shown in Table 3.

4 Tests and Results
For test purposes, we created test application in c#

without multiple threads, like Karaboga`s and

Bastuk`s software in C programming language [6],

[8], [9]. We ran two types of tests. First, we ran

speed test, where we compare single thread

application to multiple threaded ABCapp (as

described in section 3). Second, we ran optimization

tests. For all benchmark functions we set the

parameters as shown in Table 1, second column and

for the Marshal function the third column. Tests

were done on Intel Core2Duo T8300 mobile

processor with 4GB of RAM on Windows 7

Operating System in Visual Studio 2008.

Parameter Bench Marsh.

Bee Num NP 20 20

Limit 100 1000

Max Cycle 2500 1000

Param Num D 100 2

Runtime 30 150

Lower bound -100 [0,-133]

Upper bound 100 [13330,0]

Table 1. Parameter values for benchmark functions.

In Table 2, we show results of speed tests (in

seconds) between single thread and multiple threads

ABC software.

Function Single

thread

One run -

one thread

Sphere 18 15,9

Rosenbrock 32,2 16,1

Griewank 31 12,8

Rastrigin 33 11,9

Schwefel 39 13,6

Marshall 28 10,5

Table 2: Speed Test results

RECENT ADVANCES in NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING

ISSN: 1790-5109 183 ISBN: 978-960-474-195-3

http://en.wikipedia.org/wiki/Utility_maximization_problem
http://en.wikipedia.org/wiki/Utility_maximization_problem
http://en.wikipedia.org/wiki/Quadratic_function

From Table 2, we can see that ABCapp is

substantially faster than ordinary C# application. So,

when each run executes within different thread,

great performance gain is achieved.

In Table 4, we show results of optimization tests

between single thread and multiple threaded

ABCapp.

Function Single thread One run - one

thread

Sphere 4,66985 E -06 1,84142 E -06

Rosenbrock 192,21429 171,92439

Griewank 2,36781 E -09 8,044651 E -10

Rastrigin 11,10223 9,10561

Schwefel 39632,89250 33665,88734

Marshallian 57,34713 57,10026

Table 3: Results for function optimization

From Table 4 can be seen that ABCapp gives

noticeable better results than ordinary ABC

software.

5 Conclusion
We implemented and tested a software system in C#

for optimization problems based on a modification

of Karaboga’s ABC algorithm and corresponding

software. Object-oriented design and appropriate

GUI allow for easy modifications and applications

to different optimization problems. Performance

was tested and proved to be superior to existing

software since use of threads better utilizes

multicore processors. Benchmark problems that are

used in the literature were tested and system is ready

to be applied to new problems.

Acknowledgment: This research is supported by

Project 144007, Ministry of Science, Republic of

Serbia.

References:

[1] Johann Dréo, Patrick Siarry, Alain Pétrowski

and Eric Taillard, Metaheuristics for Hard

Optimization, Springer Berlin Heidelberg, pp.

1-19, 2006.

[2] Saif Mahmood Saab , Dr. Nidhal Kamel Taha

El-Omari, Dr. Hussein H. Owaied, Developing

optimization algorithm using artificial bee

colony system, UbiCC Journal, Volume 4, No

5, pp. 391-396, December 2009.

[3] Teodorovic, D., Dell’Orco M., Bee colony

optimization—a cooperative learning approach

to complex transportation problems, Advanced

OR and Al. Methods in Transportation, pp. 51-

60, 2005.

[4] Drias, H., Sadeg, S., Yahi, S, Cooperative bees

swarm for solving the maximum weighted

satisfiability problem, LNCS, Volume

3512/2005, Springer, Berlin, pp. 318 - 325,

2005.

[5] Benatchba, K., Admane, L., Koudil, M, Using

bees to solve a data-mining problem expressed

as a max-sat one, LNCS, Volume 3562/2005,

Springer, Berlin, pp. 212-220, 2005.

[6] D. Karaboga, B. Basturk, Artificial bee colony

(ABC) optimization algorithm for solving

constrained optimization problems, Lecture

Notes in Artificial Intelligence 4529, Springer -

Verlag, Berlin, pp. 789–798, 2007.

[7] D. Karaboga, An idea based on honey bee

swarm for numerical optimization, Technical

Report TR06, Computer Engineering,

Department, Erciyes University, Turkey, 2005.

[8] Dervis Karaboga, Bahriye Basturk, A powerful

and efficient algorithm for numerical function

optimization: artificial bee colony (ABC)

algorithm, Springer Science and Business

Media, pp. 459-471, 2007.

[9] D. Karaboga, B. Basturk, On the performance

of artificial bee colony (ABC) algorithm,

Applied Soft Computing 8, pp. 687-697, 2008.

[10] Alok Singh, An artificial bee colony algorithm

for the leaf-constrained minimum spanning tree

problem, Applied Soft Computing, Vol 9, Issue

2, 2009, pp. 625-631.

RECENT ADVANCES in NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING

ISSN: 1790-5109 184 ISBN: 978-960-474-195-3

View publication stats

https://www.researchgate.net/publication/234815166

